首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper the investigation of wave-particle interaction during simultaneous injection of electron and xenon ion beams from the satellite Intercosmos-25 (IK-25) carried out using the data of the double satellite system with subsatellite Magion-3 (APEX). Results of active space experiment devoted to the beam-plasma instability are partially presented in the paper Baranets et al. (2007). A specific feature of the experiment carried out in orbits 201, 202 was that charged particle flows were injected in the same direction along the magnetic field lines B0 so the oblique beam-into-beam injection have been produced. Results of the beam-plasma interaction for this configuration were registered by scientific instruments mounted on the station IK-25 and Magion-3 subsatellite. Main attention is paid to study the electromagnetic and longitudinal waves excitation in different frequency ranges and the energetic electron fluxes disturbed due to wave-particle interaction with whistler waves. The whistler wave excitation on the 1st electron cyclotron harmonic via normal Doppler effect during electron beam injection in ionospheric plasma are considered.  相似文献   

2.
The conversion of Langmuir waves into electromagnetic radiations is an important mechanism of solar type III bursts. Langmuir waves can be easily excited by electron beam instability, and they can be converted into backward propagating Langmuir waves by wave–wave interaction. Generally, the backward propagating Langmuir waves are very important for the second harmonic emission of solar type III bursts. In this work, we pay particular attention to the mechanism of the backward propagating Langmuir waves by particle in cell (PIC) simulations. It is confirmed that the ions play a key role in exiting the backward propagating Langmuir waves. Moreover, the electron beam can hardly generated the backward propagating Langmuir waves directly, but may directly amplify the second harmonic Langmuir waves.  相似文献   

3.
由于很大一部分来自激波上游的粒子被激波面所反射,因此在准平行无碰撞激波的上游存在着等离子体束流.通过一维混合模拟方法,计算了束流密度较小(nb/n0=0.02)和较大(nb/n0=0.2)两种不同情形下的等离子体束流不稳定性.结果表明,在束流密度较小时,束流激发的主要是平行于背景磁场方向传播的右旋波,此波动只能对束流粒子产生影响,包括减速和加热.在束流密度较大时,束流可同时激发平行和反平行于背景磁场方向传播的右旋波,除能对束流粒子产生影响外,还可通过非共振作用加速和加热背景粒子.文中对准平行无碰撞激波耗散机制的影响也进行了讨论。  相似文献   

4.
大气重力波与电子密度扰动的耦合   总被引:1,自引:1,他引:0  
本文从相互耦合的大气流体方程和双流体等离子体方程出发, 导出了赤道F区大气重力波和电子密度扰动的耦合色散关系, 据此对两者的共振相互作用作了进一步的理论分析。结果表明, 大气重力波可以通过共振耦合将部分能量转换给带电粒子, 为赤道扩展F提供初始电子密度扰动;在这过程中, 等离子体不稳定性对共振条件和共振耦合有着重要的影响。   相似文献   

5.
Experiments, which somewhat simulate the injection of monoenergetic (several keV) electron beams into the ionosphere, have been performed in the very large (17 m × 26 m) vacuum chamber at Johnson Space Center. Typical operating ranges were: Beam current, I (0–130 mA), beam energy, E (0.5–3 kV), magnetic field, (0.3–2 G), path length, L (10–20 m), and injection pitch angle, α(0–80°). Measurements were carried out in both steady state and pulsed modes. In steady state and for constant V, B, p, L, α, the beam plasma discharge (BPD) is abruptly ignited when the beam current is increased above a critical value; at currents below critical, the beam configuration appears grossly consistent with single particle behavior. If it is assumed that each of the experiment parameters can be varied independently, the critical current required for ignition obeys the empirical relationship at p < 2 × 10?5 torr:
IE3/2B0.7pL
The BPD is characterized by 1) a large increase in the plasma production rate manifested in corresponding increases in the 3914 Å light intensity and plasma density, 2) intense wave emissions in a broad band centered at the plasma frequency and a second band extending from a few kHz up to the electron cyclotron frequency, 3) scattering of the beam in velocity space and 4) radial expansion and pitch angle scattering of the primary beam leading to the disappearance of single particle trajectory features.Measurements of the BPD critical current have been carried out with an ion thruster (Kaufman engine) to provide a background plasma, and these indicate that the presence of an ambient plasma of typical ionospheric densities has little effect on the critical current relation.Measurements of wave amplitudes over a large frequency range show that the amplitude of waves near the plasma and electron cyclotron frequencies are too small to cause or sustain BPD, and that the important instabilities are at much lower frequency (~ 3 kHz in these measurements).  相似文献   

6.
We investigate electron acceleration due to shear Alfvén waves in a collissionless plasma for plasma parameters typical of 4–5RE radial distance from the Earth along auroral field lines. Recent observational work has motivated this study, which explores the plasma regime where the thermal velocity of the electrons is similar to the Alfvén speed of the plasma, encouraging Landau resonance for electrons in the wave fields. We use a self-consistent kinetic simulation model to follow the evolution of the electrons as they interact with a short-duration wave pulse, which allows us to determine the parallel electric field of the shear Alfvén wave due to both electron inertia and electron pressure effects. The simulation demonstrates that electrons can be accelerated to keV energies in a modest amplitude sub-second period wave. We compare the parallel electric field obtained from the simulation with those provided by fluid approximations.  相似文献   

7.
We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. In the initialisation of the beam-plasma system, “quiet start” conditions were approached by including the poloidal magnetic field due to the current carried by beam electrons streaming along a background magnetic field. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, (2) the parallel phase velocity of the whistler wave is smaller than that of the beam mode, and (3) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is involved in the generation of the whistler waves.  相似文献   

8.
在发射调制电子束的主动空间试验中,电子束与背景等离子体的线性和非线性相互作用将产生哨声波辐射.影响辐射特性的因素很多,调制电子束的弛豫长度是其中一个重要因素.本文研究了呈指数衰减的调制电子束弛豫长度对电子束产生的哨声波辐射特性的影响.结果表明,当电子束弛豫长度与背景等离子体非均匀特征尺度相当时,有利于提高调制电子束产生的波辐射强度.   相似文献   

9.
The process of generation of upper-hybrid waves by electron beam with loss-cone distribution is considered. The necessary conditions of the double plasma resonance effect, which is considered to be one of the most probable formation mechanisms of the zebra patterns in the spectra of solar radio emission, are investigated. It is shown that this effect considerably affects excitation of waves by electrons with power-law energetic spectrum. Interpretation of observations and diagnostics of plasma for the April 21, 2002 event are performed. It is found that the zebra stripes consist of separate short pulses; there is a good correlation between the separate stripes (with a certain temporal shift). The conclusion about the impulsive mode of injection of energetic particles into the coronal loop is made.  相似文献   

10.
The whistler-mode waves and electron temperature anisotropy play a key role prior to and during magnetic reconnection. On August 21, 2002, the Cluster spacecrafts encountered a quasi-collisionless magnetic reconnection event when they crossed the plasma sheet. Prior to the southward turning of magnetospheric magnetic field and high speed ion flow, the whistler-mode waves and positive electron temperature anisotropy are simultaneously observed. Theoretic analysis shows that the electrons with positive temperature anisotropy can excite the whistler-mode waves via cyclotron resonances. Using the data of particles and magnetic field, we estimated the whistler-mode wave growth rate and the ratio of whistler-mode growth rate to wave frequency. They are 0.0016fce (Electron cyclotron frequency) and 0.0086fce, respectively. Therefore the whistler-mode waves can grow quickly in the current sheet. The combined observations of energetic electron beams and waves show that after the southward turning of magnetic field, energetic electrons in the reconnection process are accelerated by the whistler-mode waves.  相似文献   

11.
A band of enhanced amplitudes which follows a local plasma frequency fn in raw high frequency (HF) noise spectra is usually related to plasma emissions in the upper hybrid band (fn, fu). The enhanced band in question occurs permanently in noise spectra recorded on the Intercosmos-19, APEX and CORONAS satellites in the altitude range of 500 km–3000 km. For moderately magnetized plasma with fn > 2fc (fc – electron gyro frequency), the band occurs below fn determined from the topside sounder and impedance data or from electron beam induced spectra. The simulations of an equivalent circuit composed of a dipole antenna in a cold plasma and its preamplifiers, determined the physical origin of the band as the passive circuit resonance, due to inductive character of the antenna in a frequency band (fc, fu). The resonance spectral content is highly structured due to an inflight variability of the circuit impedances. In this report we analyze the noise and impedance spectra which are the most typical in an auroral zone if fn > fc. We focus attention on determination of local electron plasma density, essential for provisional HF mode classification. We found that the natural plasma emission in the upper hybrid band does not manifest itself as the banded natural emission, which may be used for reliable determination of local plasma frequency in the altitude range of 500–3000 km. The fast magnetosonic mode predominates in the auroral emissions. The broadband and multi banded electromagnetic emissions extending from the fast magnetosonic band well above fn > fc are characteristic for the strong wave activity and are much less frequent.  相似文献   

12.
We reported the results of our investigations of wave activity in high-frequency range performed on board CLUSTER spacecraft in the middle-altitude cusp region, around 5 RE during August and September 2002. Our analysis was mainly based on the registration gathered by the WHISPER instrument (Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation). For a better understanding of the processes of wave-particle interaction and in order to understand the general plasma conditions in the cusp region, we also included in our analysis the data registered by the STAFF (Spatio-Temporal Analysis of Field Fluctuation experiment) instrument and the CIS (Ion Spectrometry experiment) instrument. These observations were carried out during different geomagnetic activity; under quiet conditions and during magnetic storm period. The space plasma is characterised by the ratio of plasma frequency to electron gyrofrequency, in this case, the local plasma frequency was, mainly, a little greater than the electron plasma, but it was also frequently observed that these two characteristic frequencies were not very different from one another. The whistler waves, electron-cyclotron waves, electron-acoustic waves and Langmuir waves have been detected when the spacecraft was crossing the middle-altitude cusp region. We suggested that the majority of those waves were generated by electron beams. For a better understanding the plasma conditions in the low and middle-altitude cusp region the past FREJA wave data results are used to describe typical wave activity detected in the low-altitude cusp region. The aim of this paper is to discuss, on the basis of a few chosen representative examples, the property of typical high wave activity detected in the lower part of cusp region.  相似文献   

13.
The structure of standing Alfvén waves with large azimuthal wave numbers (m ? 1) is studied in a dipole model of the magnetosphere with rotating plasma. In the direction across magnetic shells the structure of such waves is determined by their dispersion associated with curvature of geomagnetic field lines and corresponds to the travelling wave localized between toroidal and poloidal resonant surfaces. In projection into the ionosphere (along geomagnetic field lines) this structure is similar to the structure of a discrete auroral arc. The azimuthal structure of an auroral arc is similar to azimuthal structure of Alfvén waves with m ∼ 100. Possible interaction mechanisms between the Alfvén waves and energetic electron fluxes forming auroral arcs are discussed.  相似文献   

14.
Electron beam experiments in space that have been done and planned in Japan are reviewed. 200eV, 1mA electron beam is emitted from a satellite and several types of wave excitation such as UHF and ωce have been observed. The satellite potential and the energy spectrum of returning electrons are measured by Langmuir probes and electrostatic energy analyser. In rocket experiments of K-10-11, K-10-12, K-9M-57, K-9M-58, K-9M-61 and K-9M-66, several types of electron guns were used whose power ranges from 1mW to 1KW. The rocket potential was measured by Langmuir probes and floating probes and optical line emission measurement and wave measurements were also done. The rocket potential was not so high as expected from the balance with ionospheric plasma but strongly affected by the plasma production by the emitted electron beam and return electrons.  相似文献   

15.
The stimulated plasma wave experiment (SPW) has been successfully carried out in the plasmasphere and the magnetosphere along the JIKIKEN (EXOS-B) satellite orbit where the plasma parameters indicate wide variety of the combination of the electron number density, ranging from 1/cc to 104/cc, and the electron cyclotron frequency, ranging from 6 kHz to 200 kHz.The upper hybrid resonances FUHR usually persists for long periods up to 125 msec and the electron cyclotron resonances nFH are stimulated at frequencies with the very high harmonic number n; sometimes, the nFH resonance takes place for n=47.All the features of the resonances including FOn reflect the characteristics of the magnetospheric plasma that contains the energetic and non-Maxwellian components of the particles. The measurement of the plasma resonance contributes to the detection of the local electron density and the magnetic field intensity. The mode of the propagating radio waves is also determined being compared with the observed local plasma resonance frequency Fp.  相似文献   

16.
There are a lot of objects in space associated with dusty plasma inclusions. Such inclusions may bear a prolonged shape and behave as waveguides for ion-sound waves. In the case of space plasmas, the dust particles can possess both negative charge, due to electron attachment, and positive one, due to photoionization. In this paper the propagation of linear and non-linear ion-sound wave pulses in the dusty plasma waveguides, possessing positive charge, is studied. It has been demonstrated that non-linear dynamics of baseband pulse propagation in plasma waveguide possesses essentially non-solitonic behavior. Namely, propagation of a long ion-sound pulse leads to an excitation of a shock-like wave but not a stable localized nonlinear pulse. Also, when a Korteveg–de Vries (KdV) soliton is incident onto the dusty plasma waveguide, some part of the soliton energy is captured by the waveguide and transformed into a multi-pulse structure. Additionally, an interaction of dusty plasma inclusions with KdV soliton can lead to the occurrence of transverse instabilities of the soliton and its eventual destruction.  相似文献   

17.
Ion dynamics in the near-Earth magnetotail region is examined during periods of fast Earthward flow with a two-dimensional (2-D) global-scale hybrid simulation. The simulation shows that shear Alfven waves are generated at x ∼ −10RE, where the strong earthward flow is arrested by the dipole field, and propagate along field lines from the equator to both southern and northern polar ionosphere. Non-gyrotropic ion velocity distributions occur where the large-amplitude Alfven waves are dominant. The simulation indicates that the Alfven waves are generated by interaction of the fast earthward flow with the stationary near-Earth plasma. Beam ions are found to be pitch-angle scattered and trapped in the wave field, leading to the non-gyrotropic ion distributions in the high-latitude plasma sheet boundary. In addition, significant particle heating and acceleration are found to occur behind the dipolarization front due to the effect of wave turbulence.  相似文献   

18.
This paper discusses photometric measurements made of the ionospheric excitation of the line λ = 5577A? at the time of electron beam injection from a rocket into the Earth's ionosphere. The gradual increase of the glow intensity per impulse occurs due to accumulation of the energy of excited states of N2(A3Σ+u) and O(′S) during their lifetimes. The large disturbed zone in the near-rocket environment (size >500 m) is connected via the interaction of ions accelerated in the rocket potential field with ionospheric components. The glow intensity modulation is observed at a height of ~98 km during the electron beam injection simultaneously with the ignition of the beam-plasma discharge (BPD). The intensity minima are explained by a decrease of the energy of accelerated ions due to effective neutralization of the rocket body by the BPD plasma. The height profile of the glow intensity revealed two maxima at heights of ~103 km and ~115 km. The second maximum (at ~115 km) indicates that, at these heights, both collision and collision-free mechanisms of accelerated ion energy transport to ionospheric components exist.  相似文献   

19.
A theoretical investigation has been made for electron acoustic waves propagating in a system of unmagnetized collisionless plasma consists of a cold electron fluid and ions with two different temperatures in which the hot ions obey the non-thermal distribution. The reductive perturbation method has been employed to derive the Korteweg–de Vries equation for small but finite amplitude electrostatic waves. It is found that the presence of the energetic population of non-thermal hot ions δ, initial normalized equilibrium density of low temperature ions μ and the ratio of temperatures of low temperature ions to high temperature ions β do not only significantly modify the basic properties of solitary structure, but also change the polarity of the solitary profiles. At the critical hot ions density, the KdV equation is not appropriate for describing the system. Hence, a new set of stretched coordinates is considered to derive the modified KdV equation. In the vicinity of the critical hot ions density, neither KdV nor modified KdV equation is appropriate for describing the electron acoustic waves. Therefore, a further modified KdV equation is derived. An algebraic method with computerized symbolic computation, which greatly exceeds the applicability of the existing tanh, extended tanh methods in obtaining a series of exact solutions of the various KdV-type equations, is used here. Numerical studies have been reveals different solutions e.g., bell-shaped solitary pulses, singular solitary “blowup” solutions, Jacobi elliptic doubly periodic wave, Weierstrass elliptic doubly periodic type solutions, in addition to explosive pulses. The results of the present investigation may be applicable to some plasma environments, such as Earth’s magnetotail region.  相似文献   

20.
在主动束-等离子体试验中,调制电子束从空间飞行器入射进电离层等离子体将会产生电磁波辐射,在不同试验条件下电磁波辐射机理也不一样,由电子束纵向约束性产生电磁波辐射是其中之一.对半无界稀薄调制电子束从空间飞行器入射进电离层等离子体时所产生的波现象进行了理论分析和数值计算.结果表明,当调制电子束沿磁力线入射时,会在电离层等离子体中产生高频电磁波辐射,该辐射主要集中在垂直于入射电子束运动方向的平面内.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号