首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于WACCM+DART(Whole Atmosphere Community Climate Model,Data Assimilation Research Test-Bed)临近空间资料同化预报系统,以2016年2月的一次平流层爆发性增温(SSW)事件为例,开展了临近空间SABER(Sounding of the Atmosphere using Broadband Emission Radiometry)和MLS(Microwave Limb Sounder)温度观测资料集合滤波同化试验.结果表明:同化SABER和MLS温度观测资料可显著降低WACCM模式在中间层和平流层中上部(0.001~10hPa)大气温度场的预报误差,改善CR试验在SSW发生时中间层变冷现象偏强、纬向风场首次发生反转的层次偏低以及增温恢复阶段0.1~10hPa的东风层提前消退、纬向风速偏大、平流层顶位置偏高等现象.基于ERA5(The Fifth Generation of ECMWF Reanalyses)再分析资料的检验表明:同化SABER和MLS温度资料明显有利于减小北半球高纬度地区(60°-90°N)平流层中上层和下中间层(0.1~14hPa)纬向风场以及平流层和中间层中下层(0.01~100hPa)温度场的分析误差;同化低层大气观测也有利于减小0.1~14hPa纬向风场和0.01~100hPa温度场的分析误差,但是不如同化SABER和MLS温度资料对临近空间纬向风场和温度场分析误差的改善效果显著.   相似文献   

2.
本文利用NIMBUS-7SAMS资料分析了东经100度子午线上的两个站点(67.5°N和42.5°N)在10mb和0.0827mb高度上从1978年底至1982年间的大气温度,获得几年的平流层冬季增温结果.在1978/1979年和1981年初的冬季,高纬站点几天内出现的平流层增温最大幅度可达65K.对平流层增温的谱分析结果指出,在高纬冬季平流层有很强的16天、32夭、21天周期的行星波。中纬冬季平流层增温幅度较小,约为20K.中纬的中间层高度上整年存在有5天、8天和16天的行星波。分析研究、南、北半球不同纬度的温度随经度的分布,得出高纬冬季平流层、中间层大气温度随经度有明显的变化。波数1和波数2的波有大的幅度(主要是波数1),从高纬到低纬,波幅逐渐减小在冬季的平流层和中间层大气中,波数1和波数2的行星波在短期内可强烈增强,引起平流层冬季增温。   相似文献   

3.
本文用Nimbus7 SAM卫星观测的温度资料,分析了突然增温事例中地面地形不同的四个子午圈剖面内的温度分布及变化过程。结果表明,高山地区、平原和海面上空的行星波加热和低平流层突然增温有很大的差别。地形的影响是明显的。   相似文献   

4.
The effects of a major stratospheric sudden warming (SSW) at extratropical latitudes have been investigated with wind and temperature observations over a Brazilian station, Cachoeira Paulista (22.7°S, 45°W) during September–October 2002. In response to the warming at polar latitudes a corresponding cooling at tropical and extratropical latitudes is prominent in the stratosphere. A conspicuous signature of latitudinal propagation of a planetary wave of zonal wavenumbers 1 and 2 from polar to low latitude has been observed during the warming period. The polar vortex which split into two parts of different size is found to travel considerably low latitude. Significant air mass mixing between low and high latitudes is caused by planetary wave breaking. The meridional wind exhibits oscillations of period 2–4 days during the warming period in the stratosphere. No wave feature is evident in the mesosphere during the warming period, although a 12–14 day periodicity is observed after 2 weeks of the warming event, indicating close resemblance to the results of other simultaneous investigations carried out from high latitude Antarctic stations. Convective activity over the present extratropical station diminishes remarkably during the warming period. This behavior is possibly due to destabilization and shift of equatorial convective active regions towards the opposite hemisphere in response to changes in the mean meridional circulation in concert with the SSW.  相似文献   

5.
平流层爆发性增温事件中大气准16日行星波   总被引:3,自引:2,他引:1       下载免费PDF全文
2014年1月上中旬高纬平流层发生弱增温事件,增温幅度约25K,纬向西风减弱并于2月初转向.行星波在平流层爆发性增温(SSW)事件产生中具有重要作用.利用北半球近东经120°链上中低纬5个流星雷达探测的风场数据,研究了此SSW事件发生前和发生期间中间层和低热层区(MLT)大气风场的行星波状况.结果显示,极区平流层增温前MLT区大气呈现出明显增强的准16日波动,增温达到最大时,16日波也最强,表明中低纬MLT区的行星波变化与SSW事件存在耦合关系.进一步利用欧洲中心平流层再分析资料数据,分析SSW期间北半球平流层的波动和零风线状况,发现平流层准16日波和零风线随时间由低纬向高纬移动,反映出16日波与SSW之间存在某种动力学联系.   相似文献   

6.
An understanding of observed global chemistry and climate changes caused by solar activity changes is a high priority in modern geosciences. Here, we discuss the influence of the ultraviolet spectral irradiance variability during solar cycle on chemical composition of the stratosphere and mesosphere with chemistry-climate model that fully describes the interactions between chemical and thermo-dynamical processes. We have performed several 20-year long steady-state runs and found a significant influence of solar irradiation on the chemical composition in the stratosphere and mesosphere. An enhanced photolysis during solar maximum results in destruction of methane, nitrous oxide and CFCs providing an increase in the chemical activity of the atmosphere with more pronounced effects in the mesosphere. In the mesosphere, an increase of HOx caused by more intensive water vapor photolysis results in significant ozone depletion there. More intensive methane oxidation gives statistically significant rise to the stratospheric humidity. The influence of dynamical perturbations has been identified over high latitude areas. The response of OH is found to be in a good agreement with observation data. The response of the other species is hard to validate, because of the lack of theoretical and observational studies.  相似文献   

7.
Temperature observations at 20–90 km height and 5°N–15°N during the period of December 1992–March 1993 from the WINDII and MLS experiments on the UARS satellite are analysed together with MF radar winds and UKMO assimilated fields of temperature and zonal and meridional winds. The correlation between the different datasets at the tropics and zonal mean wind data at mid latitudes is examined for period February–March 1993, when series of stratospheric warming events were observed at middle and high latitudes. Wavelet analysis is applied to investigate coupling between stationary and travelling planetary waves in the stratosphere and the upper mesosphere. Planetary waves m = 1 with periods of 4–7 days, 8–12 days and 13–18 days are found to dominate the period. Westward 7- and 16–18 day waves at the tropics appear enhanced by stationary planetary waves during sudden stratospheric warming events.  相似文献   

8.
Recent progress in the theoretical and observational investigation of middle atmosphere tides is reviewed. Theoretical advances include development of more realistic thermal excitation and numerical simulation models, investigation of seasonal — latitudinal and longitudinal variations in tidal structures, and the origin and effects of ‘unsteadiness’ in tidal oscillations over periods of days. Recent analyses of middle latitude radar data between 80 Km and 130 Km delineate consistent seasonal phase patterns in this region. Analyses of rocket data show stratosphere and lower mesosphere tides to be characterized by smaller amplitudes, shorter vertical scales, greater unsteadiness, and greater spatial variability than exhibited in the upper mesosphere and above. Results from the first two ATMAP (Atmospheric Tides Middle Atmosphere Program) campaigns are also discussed.  相似文献   

9.
The design and performance of SAMS, an infrared limb-scanning instrument for sounding the temperature and composition of the atmosphere from 15 to 150 km altitude, are reviewed. Some examples of preliminary results on temperature and water vapour and nitrous oxide abundance versus latitude and height are presented.  相似文献   

10.
我国地区20—80km高空大气温度特征   总被引:2,自引:1,他引:2  
利用Nimbus-7卫星1979-1981年的平流层和中间层大气温度探测(SAMS)数据,首次较全面地分析了我国上空20-80km高度大气温度的分布特征,并与COSPAR国际参考大气CIRA-1986进行了比较。结果指出,我国上空大气温度分布与COSPAR国际参考大气CIRA-1986的纬向平均温度分布存在一定差别,可供航空航天工作者参考。  相似文献   

11.
In the 95km height region of the atmosphere, ground-based techniques made an important contribution to the CIRA 72 [1] wind model. Recent wind measurements from a partial reflection experiment at 44S covering one and a half years are presented and compared with CIRA 72. The zonal wind component compares favourably, although the measured values are more easterly above 80km in autumn and winter; a feature of the autumn winds is a temporary easterly reversal above 90km. Winter mesospheric winds can be very disturbed. The summer mesosphere easterly maximum appears earlier in the season and at a higher altitude than the model. A much poorer comparison is shown between the measured meridional wind component and the 1969 model of Groves [2].  相似文献   

12.
平流层,中间层,低热层大气加热过程特性研究   总被引:3,自引:1,他引:2       下载免费PDF全文
本文计算了平流层、中间层和低热层大气中各种光化过程的加热率与大气的冷却率,并且给出了20—140km的大气净加热率的昼夜变化特征.为大气潮汐波的研究提供了基础.  相似文献   

13.
Equatorial total column ozone variations with quasi-biennial periodicity are described by paying attention to their coupling with the quasi-biennial oscillation (QBO) of zonal wind in equatorial stratosphere. Analysis is made for the 35-year time interval from 1978 to 2013 using the zonal mean total ozone (TOZ) data in latitude band from 5° S to 5° N derived from satellite measurements by means of Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument (OMI). The study was performed using strong seasonal regularities of the wind QBO and the discrete variation of the QBO-period revealed earlier. The forecast of the wind QBO evolution made in Gabis (2012) is fully justified. The comparison between predicted and actually observed changes of the height wind structure shows the prominent accordance, which confirms the forecast validity. It is shown that variations of deseasonalized TOZ are in strong coupling with changes of equatorial wind QBO that coincides with the numerous previous researches. However our results contradict the assumption about quite complicated ozone response in the equatorial region due to continuously varying with time relationship between annual and quasi-biennial cycles and irregularly variable wind QBO-period. The total ozone changes actually observed clearly corresponds to the mean ozone variations calculated for different QBO scenarios and aligned according to the sequence of QBO scenarios already occurred in fact. This close association indicates the possibility of forecasting the equatorial total ozone QBO based on the predicted wind QBO.  相似文献   

14.
利用N8mbus-7卫星上角度扫描红外辐射计(SAMS)的资料,分析出大气温度剖面具有行星波垂直结构的驻波结构;讨论了波长、振幅随高度的分布,驻波结构随经度、纬度的变化,以及可能的形成机制。  相似文献   

15.
This institute conducted a series of meteorological rocket experiments for the upper-atmospheric sounding in the winter of 1979. Within the overlap altitude range with balloon flights, a comparison of the results with the standard radiosonde data indicated that the rocket-borne system was reliable. The measurements from foru rocket flights for the region between 20 and 30 km showed a degree of compatibility to each other while those for above 30 km differed considerably from one another. At low latitude, the temperature profiles in the winter stratosphere in general showed a reasonably good agreement with the U.S. Standard Atmospheric Supplements, 1966 (USSAS 66). A temperature of 2–24°C lower than the USSAS 66, however, was recorded in the lower mesosphere. Above 30 km the maximum diurnal variation in temperature was 9°C or so. In the winter, the wind profile showed the westerlies and the maximum wind velocity of 92.1 Msec?1 was obtained from these experiments at the height of 60 km.  相似文献   

16.
Summer duration (SD) is defined here as the time interval between spring and autumn turn around of zonal winds in the stratosphere. SD long-term trends are obtained from analysis of middle stratosphere NCEP and ECMWF data. They are found to be dependent on latitude and altitude. Wind data are available since 1948. The corresponding analysis suggests a breakpoint in the trend at around 1980: SD increases before 1980, and decreases afterwards. Corresponding changes of stratospheric wave activity are analyzed and found to be a major contribution to the SD trends. Long-term computer runs of the Whole Atmosphere Community Climate Model (WACCM 1b) are consistent with these results. Vegetation data on the ground indicate similar trends with a break.  相似文献   

17.
MST radar studies at low latitude stations have documented regions in the mesosphere from where enhanced echoes (Low Latitude Mesospheric Echoes (LMEs)) are observed. Such echoes cannot, in general, be explained by considering the dynamical aspects (such as turbulence, winds, waves, etc.) of the region alone. Mesospheric dust/aerosols can enhance the radar echoes considerably and dust is known to exist at all heights and latitudes of the mesosphere. This study investigates the presence of dusty plasma in the mesosphere through the heterogeneous ion-chemistry of the region.Dust of meteoric origin is incorporated in the conventional ion chemistry scheme and the equilibrium height profiles of charged and neutral dust densities corresponding to effective dust sizes (radii) of 1, 10 and 30 nm are computed for the equatorial quiet daytime conditions.The model derived dust density profiles show structures with respect to dust size, height and season that are indicative of the possible role of mesospheric dust in the production/enhancement mechanisms of the LMEs observed over the equatorial station at Gadanki (13.5°N, 79.2°E), India.  相似文献   

18.
Umkehr, ozonesonde and satellite observations were used to determine the height/latitude distribution of the amplitude and phase of the periodic components of the variation of the ozone mixing ratio in the middle and upper stratosphere. The amplitude of the first (annual) harmonic is small in the subtropics and increases to a maximum at polar latitudes. It also increases with height in the mid and upper stratosphere to an apparent maximum just below the stratopause. The second (semi-annual) harmonic has an amplitude that is largest in tropical regions and in subpolar regions at a level of about 40 km. There seems to be very little ozone variation above 30 km with dominant periods close to the quasi-biennial period of total ozone observed in the tropics. The percent of the total variance of the ozone mixing ratio accounted for by the first harmonic is larger than 60 percent at all heights from 20° – 60° latitude in both hemispheres (except near 40 km in the Northern Hemisphere). The percent of the total variance accounted for by the second harmonic is maximum at a height of about 40 km in the tropics and at subpolar latitudes where, as mentioned, its amplitude is also largest.The phase of the first harmonic shows a marked transition from a winter/spring maximum below 30 km to a summer maximum at 30 km, changing rapidly to a maximum in winter in both hemispheres. The regions of minimum amplitude of the annual variation and the marked phase shifts with height both indicate the separation by levels of the dominant physical control mechanisms on the periodic changes of the ozone mixing ratio in the middle and upper stratosphere. Changes below 30 km respond primarily to dynamic influences in the lower stratosphere while above 30 km the periodic variations result mainly from photochemical processes. Above 40 km these variations are strongly temperature dependent.  相似文献   

19.
Radio occultation measurements of the temperature structure of the Venus atmosphere have been obtained during seven occultation “seasons” extending from December 1978 to December 1983. Approximately 123 vertical profiles of temperature from about 40 km to about 85 km altitudes have been derived. Since these measurements cover latitudes from both poles to the equator, they have shown the latitudinal dependence of thermal structure. There is a smooth transition from the troposphere to the mesosphere at latitudes below about 45°, with the tropopause at about 56 km. The troposphere then rises to about 62 km in the “collar cloud” region between about 60° and 80° latitude, where a strong temperature inversion (up to 30 K) is present. In the polar areas, 80°–90°, the mesosphere becomes isothermal and there is no inversion. This latitudinal behavior is related to the persistent circulation pattern, in which a predominantly zonal retrograde motion at latitudes below 45° gradually changes to a circumpolar vortex at the “collar cloud” latitudes. Indeed, the radio occultation data have been used in a cyclostrophic balance model to derive zonal winds in the Venus atmosphere, which showed a mid-latitude (50°–55°) jet with a speed of about 120–140 ms?1 at about 70 km altitude /1,2/. The observations obtained in 1983 and 1984 have shown that above the tropopause there is considerable temporal variability in the detailed thermal structure, suggesting that the persistent circulation pattern is subject to weather-like variability.  相似文献   

20.
本文利用NIMBUS-7SAMS温度资料,分析研究了1979年至1982年期间发生的3.5级以上大耀斑事件对中层大气温度的影响。并对其物理过程进行了分析和讨论。主要结论是:在太阳大耀斑爆发前后的一两天内,在20°N-60°N地区的中间层大气上部,大气温度有明显降低,中间层下部则有明显增加。对平流层顶高度以下的大气温度没有明显影响。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号