首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Interplanetary physics study is an important ingredient in space weather research. Considerable progress this aspect has been achieved by the space physics community of China in recent years. This brief report summarizes the latest advances of the interplanetary physics research in China during the period of 2008--2010. This report includes solar corona and solar wind, interplanetary transients, energetic particles, MHD simulation, space plasma, and prediction methods for physical phenomena originating from both solar corona and interplanetary space.   相似文献   

2.
Significant progress has been made by Chinese scientists in research of interplanetary physics during the recent two years (2018-2020). These achievements are reflected at least in the following aspects:Activities in solar corona and lower solar atmosphere; solar wind and turbulence; filament/prominence, jets, flares, and radio bursts; active regions and solar eruptions; coronal mass ejections and their interplanetary counterparts; other interplanetary structures; space weather prediction methods; magnetic reconnection; Magnetohydrodynamic (MHD) numerical modeling; solar energetic particles, cosmic rays, and Forbush decreases; machine learning methods in space weather and other aspects. More than one hundred and forty papers in the academic journals have been published in these research directions. These fruitful achievements are obtained by Chinese scholars in solar physics and space physics either independently or through international collaborations. They greatly improve people's understanding of solar activities, solar eruptions, the corresponding space weather effects, and the Sun-Earth relations. Here we will give a very brief review on the research progress. However, it must be pointed out that this paper may not completely cover all achievements in this field due to our limited knowledge.   相似文献   

3.
Great progress has been made in the research of solar corona and interplanetary physics by the Chinese scientists during the past two years (2014-2016). Nearly 100 papers were published in this area. In this report, we will give a brief review to these progresses. The investigations include:solar corona, solar wind and turbulence, superhalo electron and energetic particle in the inner heliosphere, solar flares and radio bursts, Coronal Mass Ejections (CMEs) and their interplanetary counterparts, Magnetohydrodynamic (MHD) numerical modeling, CME/shock arrival time prediction, magnetic reconnection, solar variability and its impact on climate. These achievements help us to better understand the evolution of solar activities, solar eruptions, their propagations in the heliosphere, and potential geoeffectiveness. They were achieved by the Chinese solar and space scientists independently or via international collaborations.   相似文献   

4.
During the past two years (2016-2018), great achievements have been made in the Chinese research of interplanetary physics, with nearly 100 papers published in the academic journals. The achievements are including but not limited to the following topics:solar corona; solar wind and turbulence; filament/prominence and jets; solar flare; radio bursts; particle acceleration at coronal shocks; magnetic flux ropes; instability; instrument; Coronal Mass Ejections (CMEs) and their interplanetary counterparts; Magnetohydrodynamic (MHD) numerical modeling; solar energetic particles and cosmic rays. The progress further improves our understanding of the eruptions of solar activities, their evolutions and propagations in the heliosphere, and final geoeffects on our Earth. These results were achieved by the Chinese solar and space scientists independently or via international collaborations. This paper will give a brief review of these achievements.   相似文献   

5.
Progress of Solar Corona Study in China   总被引:1,自引:0,他引:1  
Solar corona study is an important aspect of space weather research.In recent years,great achieVements have been acquired on the solar corona study by the space physics group of China.This paper gives a brief outline of these progresses that have been made during 2006--2008.This kind of research includes observational study of the corona,theoretical investigations,statistical analysis based on a large number of data sets,numerical method for MHD modeling,numerical study of space weather events,and prediction methods for the complicated processes originating from the solar corona.Each is given as a separate part in the following.   相似文献   

6.
Considerable progress for the study of solar corona physics has been achieved by China's space physics community. It involves the theoretical study of coronal process of solar active phenomena, solar wind origin, acceleration of solar wind and coronal mass ejections, observational and numerical study of these problems and prediction methods of solar eruptive activities (such as flares/CMEs). Here is a brief summary of the progress in this area. Main progress is put upon the following three topics: corona and solar wind, numerical method, prediction method.  相似文献   

7.
The solar and interplanetary origin of space weather disturbances, as well as the related magnetospheric dynamics, will be presented. Besides the involved phenomenology in solar–terrestrial physics, some of the main effects of space weather variability concerning mankind in space and at the earth’s surface will also be discussed. The November 2003 event is shown as an example of the solar, interplanetary and magnetospheric aspects of a space weather storm.  相似文献   

8.
This is an overview of progresses in heliospheric physics made in China in the period of June, 2000 to May, 2002. The report is focused on theoretical studies,modelling and observational analysis of interplanetary physical phenomena, and consists of five sections: the acceleration and heating of the solar wind, corona structures, coronal mass ejections, magnetic reconnection phenomena, and in terplanetary transient phenomena. The main achievements made recently by Chinese scientists in related areas are simply listed in corresponding sections without any priority, only certain editorial consideration.  相似文献   

9.
Advances in modeling gradual solar energetic particle events   总被引:1,自引:0,他引:1  
Solar energetic particles pose one of the most serious hazards to space probes, satellites and astronauts. The most intense and largest solar energetic particle events are closely associated with fast coronal mass ejections able to drive interplanetary shock waves as they propagate through interplanetary space. The simulation of these particle events requires knowledge of how particles and shocks propagate through the interplanetary medium, and how shocks accelerate and inject particles into interplanetary space. Several models have appeared in the literature that attempt to model these energetic particle events. Each model presents its own simplifying assumptions in order to tackle the series of complex phenomena occurring during the development of such events. The accuracy of these models depends upon the approximations used to describe the physical processes involved in the events. We review the current models used to describe gradual solar energetic particle events, their advances and shortcomings, and their possible applications to space weather forecasting.  相似文献   

10.
This brief report summarized the latest advances of the interplanetary physics research in China during the period of 2004-2005, made independently by Chinese space physicists and through international collaboration. The report covers all aspects of the interplanetary physics, including theoretical studies, numerical simulation and data analysis.  相似文献   

11.
This brief report summarized the latest advances of the interplanetary physics research in China during the period of 2006-2007,made independently by Chinese space physicists and through international collaboration.The report covers all aspects of the interplanetary physics,including theoretical studies,numerical simulation and data analysis.  相似文献   

12.
本文基于太阳高能电子和日冕区开放场及行星际磁场特征,建立了相对论电子束与伴有空间变化(空间周期变化)的轴向场相互作用模型,用数值方法研究了该体系产生的电磁不稳定性,结果指出只有当太阳高能电子束速度和空间振荡场波数大到一定程度时,该体系才可激发在旋电磁模不稳定性,当太阳高能电子束逐一通过日冕和行星际空间时,激发具有波频向低频漂移特征的电磁波.  相似文献   

13.
Solar radio bursts (SRBs) are the signatures of various phenomenon that happen in the solar corona and interplanetary medium (IPM). In this article, we have studied occurrence of Type III bursts and their association with the Sunspot number. This study confirms that occurrence of Type III bursts correlate well with Sunspot number. Further, using the data obtained using e-CALLISTO network, we have investigated drift rates of isolated Type III bursts and duration of the group of Type III bursts. Since Type II, Type III and Type IV bursts are signatures of solar flares and/or CMEs, we can use the radio observations to predict space weather hazards. In this article, we have discussed two events that have caused near Earth radio blackouts. Since e-CALLISTO comprises more than 152 stations at different longitudes, we can use it to monitor the radio emissions from the solar corona 24 h a day. Such observations play a crucial role in monitoring and predicting space weather hazards within few minutes to hours of time.  相似文献   

14.
This is a survey of solar phenomena and physical models that may be useful for improving forecasts of solar flares and proton storms in interplanetary space. Knowledge of the physical processes that accelerate protons has advanced because of gamma-ray and X-ray observations from the Solar Maximum Mission telescopes. Protons are accelerated at the onset of flares, but the duration of any subsequent proton storm at 1 AU depends on the structure of the interplanetary fields. X-ray images of the solar corona show possible fast proton escape paths. Magnetographs and high-resolution visible-band images show the magnetic field structure near the acceleration region and the heating effects of sunward-directed protons. Preflare magnetic field growth and shear may be the most important clues to the physical processes that generate high energy solar particles. Any dramatic improvement in flare forecasts will require high resolution solar telescopes in space. Several possibilities for improvements in the art of flare forecasting are presented, among them: the use of acoustic tomography to probe for subsurface magnetic fields; a satellite-borne solar magnetograph; and an X-ray telescope to monitor the corona for eruptions.  相似文献   

15.
针对太阳高纬度探测器轨道设计任务要求, 研究了基于多目标遗传算法的小推力借力飞行轨道设计方法. 基于圆锥曲线拼接假设, 将探测器轨道分为小推力日心转移轨道段和木星借力飞行轨道段两部分. 在日心转移轨道段, 选择燃料最省为优化目标, 采用标称轨道法设计小推力的推力控制率. 在借力飞行轨道段, 选择借力后日心轨道倾角为优化目标, 对借力飞行的关键参数进行分析. 采用多目标遗传算法对该多目标进行了优化. 结果表明, 多目标遗传算法可以有效地解决轨道设计中的多目标优化问题. 优化得到的小推力控制率不仅可以节省发射能量, 还可以保证借力飞行后探测器能够进入太阳高纬度探测轨道.   相似文献   

16.
We review the status of the best “off-the-shelf” tool available for the study of dynamical behavior of coronal transients and traveling interplanetary disturbances. This tool involves numerical solution of the initial-boundary value problem of multi-dimensional time-dependent magnetohydrodynamics. While this tool cannot address questions of turbulence and kinetic behavior, we suggest that deeper understanding of large scale phenomena can be obtained by direct comparison of the MHD models with multi-disciplinary synoptic observations of specific events on the sun, and in the corona and interplanetary space. Conclusions reached after a recent critique (based on a limited set of observational and numerical data) of the MHD paradigm's application to coronal transients are examined and found to have limited validity. Substantial observational progress was achieved during SMY through ground- and space-based observations of solar and interplanetary events. Many of these observations can confidently be associated with one another for specific events. These associations can be combined into a reasonable scenario of geometrical extent and mass, energy and momentum transfer in the framework of the solar-terrestrial chain of cause and effect. Several of these events during STIP Interval VII in August 1979 are used to provide test cases for an MHD simulation that is described with some details. The bringing-together of diverse observations is necessary in order to outline a program for the testing of dynamical models and their more physically-restricted approximations.  相似文献   

17.
一类TVD型组合差分方法及其在磁流体数值计算中的应用   总被引:4,自引:2,他引:4  
根据太阳风数值模拟的特点,考虑到算法的质量(收敛速度、稳定性、精度等),结合磁流体数值计算的特性,对三维球坐标磁流体动力学(MHD)方程组中的流体部分采用一种修正Lax-Friedrichs差分法而对磁场部分采用MacComack格式,发展了一类快捷的具有TVD特性的组合数值新方法,作为格式的检验,在一维情况下,将其与PPM格式进行了比较,对一维快慢磁流体激波问题得到了与PPM格式精度相同的结果,然后将其诮到定态太阳风的数值模拟上,在不同等离子体β情形下,可得到理想的太阳风定态结构,为今后将此数值模式应用到具有复杂磁场位型或三维直实太阳风暴的数值模拟研究奠定了基础。  相似文献   

18.
It is possible to model the time-intensity profile of solar particles expected in space after the occurrence of a significant solar flare on the sun. After the particles are accelerated in the flare process, if conditions are favorable, they may be released into the solar corona and then into space. The heliolongitudinal gradients observed in the inner heliosphere are extremely variable, reflecting the major magnetic structures in the solar corona which extend into space. These magnetic structures control the particle gradients in the inner heliosphere. The most extensive solar particle measurements are those observed by earth-orbiting spacecraft, and forecast and prediction procedures are best for the position of the earth. There is no consensus of how to extend the earth-based models to other locations in space. Local interplanetary conditions and structures exert considerable influence on the time-intensity profiles observed. The interplanetary shock may either reduce or enhance the particle intensity observed at a specific point in space and the observed effects are very dependent on energy.  相似文献   

19.
China’s Space Astronomy and Solar Physics in 2011-2012   总被引:1,自引:1,他引:0  
In the first part of this paper, we describe briefly the mid and long-term plan of Chinese space astronomy, its preliminary study program, the current status of satellite missions undertaken, and the current status of astronomy experiments in China’s manned space flight program. In the second part, the recent research progress made in the fields of solar physics is summarized briefly, including solar vector magnetic field, solar flares, CME and filaments, solar radio and nonthermal processes, EUV waves, MHD waves and coronal waves, solar model and helioseismology, solar wind and behavior of solar cycle.   相似文献   

20.
在目前仪器特点和性能的基础上, 结合中国现有卫星特点和技术基础, 提出了一种新型太阳极紫外多波段成像仪, 采用小型化设计, 利用一台仪器实现对日冕和色球层4个不同波段的高分辨率成像, 不仅能有效利用卫星资源, 提高空间探测水平, 还能实现对日冕和色球的同时观测, 推动空间天气研究, 提高空间天气预报水平.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号