首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
王美琪  陈雷  曾文  杨昆  宋鹏  郑玮琳 《推进技术》2022,43(4):370-376
为了研究等离子体中的活性粒子(OH自由基)对航空煤油着火特性的影响,选择正癸烷骨架机理作为航空煤油替代燃料。用零维均质完全混合模型和零维完全预混模型对等离子体点火和燃烧过程进行计算分析,计算敏感度和各组分摩尔分数来揭示活性粒子的添加对正癸烷着火特性的影响,并采用敏感性分析方法对反应机理进行了适当修正。结果表明:修正后机理的着火延迟时间曲线与正癸烷自点火曲线趋势一致。OH自由基的添加显著缩短航空煤油的着火延迟时间:在750K时,加入0.1%OH自由基相比正癸烷自点火着火延迟时间缩短约41%;加入0.5%OH自由基缩短约52.3%。加入0.8%OH自由基缩短约58.2%。加入OH自由基之后大部分基元反应的敏感度向着促进反应进行的方向增加。  相似文献   

2.
陈其盛  窦志国  李兰  祝超 《推进技术》2015,36(10):1533-1538
为研究煤油的点火特性,在反射型激波管中测量了煤油及替代燃料的点火延迟时间。通过测量激波压力信号和OH自由基光强信号,分析了点火温度、当量比对煤油点火延迟时间的影响。实验温度范围为1100~1800K,压力为0.1MPa,反应当量比为0.5,1.0,1.5。选用正癸烷(80%)和三甲基苯(20%)组成的替代燃料,在相同实验条件下比较了替代燃料对煤油点火模拟的准确性。结果表明随着点火温度升高和当量比的降低,煤油及其替代燃料的点火延迟时间缩短,点火延迟时间的对数与温度倒数成正比。选定的替代燃料可以较好地模拟实际煤油的点火延迟过程。  相似文献   

3.
马庆明  熊鹏飞  郑东  李游  潘飘  周斌 《推进技术》2022,43(3):290-294
为获得燃料低温自点火特性以及等离子体对燃料点火的促进作用,本文基于快速压缩机实验系统,研究了52%He稀释、当量比1.0、压力3.4MPa、温度范围877.7-915.9K条件下航煤裂解气(29.4%CH4/ 30.8%C2H6/ 21.3%C2H4/ 18.5%C3H6)的自点火特性,获得其点火延迟时间。其次,在此基础上采用放电与化学反应动力学解耦方法研究了非平衡等离子体对航煤裂解气点火的促进作用。结果表明:随着初始温度从877.7 K升高至915.9 K,裂解气点火延迟时间从65.5 ms缩短至8.1 ms,且实验测量结果与修正后的USC-II机理预测结果基本一致。同时研究得出在不同温度下等离子体放电对裂解气点火有不同程度的促进作用,在低温下促进效果更加明显。  相似文献   

4.
刘靖  胡二江  黄佐华  曾文 《推进技术》2021,42(2):467-473
为了获得一种新的国产RP-3航空煤油模拟替代燃料的着火延迟特性,在化学激波管中完成了初始压力分别为0.1MPa与0.3MPa,当量比分别为0.5,1.0与1.5,着火温度为1000~1700K条件下该模拟替代燃料着火延迟时间的试验测试,分析了初始压力与当量比对该模拟替代燃料着火延迟时间的影响规律,并与相应工况条件下RP-3航空煤油的着火延迟特性进行了对比分析。结果表明,不同工况条件下,该模拟替代燃料的着火延迟时间的对数与着火温度的倒数呈线性关系;其着火延迟时间随当量比的降低或着火温度、初始压力的升高逐渐缩短;相同工况条件下,该模拟替代燃料的着火延迟时间与RP-3航空煤油的着火延迟时间吻合较好。  相似文献   

5.
李勇  沈怀荣 《推进技术》2013,34(11):1530-1536
为了探讨非平衡等离子体对甲烷点火和火焰传播速度影响,采用化学动力学模型GRI-Mech3.0,利用零维、均质、完全混合模型和火焰传播速度模型,对甲烷点火过程和火焰传播过程进行数值模拟,计算得到了非平衡等离子体生成自由基(O自由基和NOX自由基)对甲烷点火延迟时间和火焰传播速度的影响规律。结果表明:当分别加入0.5% O和0.5% NOX活性基时,点火延迟时间减少了约94.7%,63.1%(加入NO)和94.2%(加入NO2)。通过反应路径分析和敏感度分析,揭示了非平衡等离子体生成自由基影响甲烷点火和火焰传播速度的化学反应机理。   相似文献   

6.
在激波管实验系统的基础上,设计了等离子体放电单元,开展了等离子体对甲烷点火延迟时间影响的研究。测量了等离子体放电时的伏安特性曲线。测量了甲烷自点火延迟时间、持续放电条件下的点火延迟时间以及放电后断电下的点火延迟时间。对甲烷点火过程中的化学反应路径进行了分析。结果表明:等离子体放电电压与电流并不呈现相同的变化趋势,放电过程中气体电阻不断发生变化。很少的放电能量(小于4J)即可有效减少甲烷的点火延迟时间,在关闭电源后,放电产生的粒子依然可以在一定程度降低甲烷点火延迟时间。在低温或高温点火条件下等离子体对甲烷点火延迟时间的影响机理基本相同。点火温度较低(小于1000K),或者较高(大于1600K)时,持续放电对甲烷点火延迟的缩短效果更加明显,可以将甲烷的点火延迟时间缩短1个数量级或1个数量级以上。等离子体对甲烷点火延迟的作用效果是点火温度与等离子体质量摩尔浓度耦合影响的结果。   相似文献   

7.
甲烷-空气混合气体放电等离子体增强点火机理分析   总被引:2,自引:0,他引:2       下载免费PDF全文
沈双晏  金星  张鹏 《推进技术》2015,36(10):1509-1515
为研究放电过程产生的等离子体对缩短甲烷点火延迟时间的效果,针对脉冲式放电,本文耦合了密度方程、能量传递方程以及Boltzmann方程,对于甲烷-空气混合气体放电粒子浓度变化规律进行了研究分析。将计算得到的放电过程中激发态分子及活性自由基作为初始组份代入CHEMKIN中进行计算,计算了放电条件下等离子体对于甲烷点火延迟时间的影响。相比于附着过程,甲烷粒子弹性碰撞、激励、电离过程的碰撞截面要大2~5个数量级。随着粒子能量的增加,各个过程碰撞截面的变化并不单调,均存在碰撞截面最大的点。混合气体的激发过程导致了80%以上的能量损失。当约化场强逐渐增大时,甲烷的电离效应逐渐增强。混合气体的附着与弹性碰撞效应造成的能量损失比较小,相比激发与电离效应可以忽略。放电过程能够产生大量不同种类的活性粒子与自由基,不同活性粒子随时间变化的规律不相同。其中,随着放电,振动激发态氮分子浓度保持为1015/cm3量级。电子激发态氮分子粒子数密度随着放电的进行,在10-8s~10-7s会产生一个峰值。模型计算的单脉冲放电产生的活性粒子,在大多数点火温度下,可将点火延迟时间缩短10%以上。脉冲式放电对于甲烷-空气混合气体点火有显著的增强效果。  相似文献   

8.
为了研究二甲苯三种同分异构体的点火特性,获得该燃料燃烧反应重要自由基OH,CH和C2的变化信息,在化学激波管中利用反射激波点火,点火温度1224~1478K,点火压力0.18~0.21MPa,燃料当量比1.0,由单色仪光谱系统测得了二甲苯/空气的点火延迟时间,并用ICCD瞬态光谱探测系统测得了点火温度1440K时对二甲苯/空气燃烧的时间分辨瞬态发射光谱。实验结果表明:对二甲苯点火延时对温度的敏感程度最高,邻二甲苯和间二甲苯的点火延时对温度的敏感程度相近;在相同实验条件下,间二甲苯和对二甲苯的点火延迟时间比较接近,邻二甲苯的点火延迟时间最短。在对二甲苯燃烧反应中,OH,CH和C2自由基一旦出现很快达到其浓度峰值,但各个自由基的消失过程各不相同,CH和C2自由基存在的时间很短,且相对浓度变化趋势几乎完全一致,而OH自由基持续时间最长。  相似文献   

9.
氢气(H2)和过氧化氢(H2O2)具有较强的反应活性,能够增强碳氢燃料的燃烧过程。为了探究添加液态氢和液态过氧化氢对航空燃油燃烧特性的影响,以正癸烷为代理燃料,采用数值模拟方法对比研究了H2和H2O2对正癸烷/空气燃烧特性的影响。研究发现,随着H2O2的增加,点火延迟时间显著缩短;而随着H2的增加,初始温度为1100 K时,点火延迟时间基本不变,在初始温度为1600 K时点火延迟时间略有缩短。随着H2O2的增加,层流火焰速度有所提升,而H2添加量对层流火焰速度的提高相对而言较小。富油燃烧时,CO排放指数随H2O2和H2的增加有所降低,NO排放指数有所增长。低压贫油燃烧时,H2O2和H2添加量对CO和NO排放指数基本没有影响;高压贫油燃烧时CO排放指数有所降低,NO排放指数有所提高,H2O2添加量的影响更加显著。   相似文献   

10.
脉冲爆震发动机点火过程离子催化效应数值模拟   总被引:3,自引:1,他引:2  
利用气体电离理论推导出氢气-空气混合气体电离后组成成分,理论分析活性基团对燃烧速率及剧烈程度的催化效应,以及不同点火能量、活性基团浓度对缓燃转爆震(DDT)过程的影响.结合氢气-空气燃烧23步化学反应动力学机制,采用FLUENT软件对不同工况下的DDT过程进行模拟,与理论分析结果对比.结果表明:点火温度为2000~2500K时,活性基团的加入,可提高燃烧速率,DDT时间可缩短9.91%~21.08%,DDT距离可缩短3.32%~8.08%,DDT时间和DDT距离的改变幅度随点火温度的升高而增大.点火能量较高时应该考虑气体电离效应.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号