首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   7篇
航空   14篇
  2023年   5篇
  2022年   3篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
基于流动点火平台,在不同当量比和流速下,对丙烷/空气稀薄预混气进行了激光点火实验。研究发现:随着当量比和流速的增加,火焰发展速度加快且火焰面积增大;火焰中的CH*发光强度随当量比提升有明显提高,通过CH*的分布及发光强度变化能判断火焰发展阶段。混合气的击穿和点火成功率都随当量比和流速的增加而增加,但改变当量比对成功率的影响比改变流速更大;通过击穿发射光谱中的H/N峰值强度比,可以判断混合气中各组分的含量变化,且使用标定线能确定未知预混合气的当量比。  相似文献   
2.
刘靖  胡二江  黄佐华  曾文 《航空动力学报》2019,34(12):2677-2685
在定容弹中实验测试了初始压力分别为0.1、0.3 MPa、初始温度分别为390、400、420 K、当量比范围为0.8~1.5时RP-3航空煤油模拟替代燃料的层流燃烧特性,并对比分析了模拟替代燃料与RP-3航空煤油的层流燃烧速率。结果表明,模拟替代燃料层流燃烧火焰的马克斯坦长度随初始压力或当量比的降低逐渐增大,表明火焰稳定性逐步增强;初始温度对火焰稳定性的影响不明显;随初始温度的升高或初始压力的降低,模拟替代燃料的层流燃烧速率逐渐升高;随着当量比的逐渐增大,模拟替代燃料的层流燃烧速率先增大后降低,在当量比为1.2时达到最大;在相同工况下,模拟替代燃料与RP-3航空煤油的层流燃烧速率吻合较好。   相似文献   
3.
真实航空燃料通常包含几十至上百种组分,直接构建其化学反应动力学模型十分困难。本文利用官能团相似法(SCFG),结合实测RP-3航空煤油组分比例,提出了RP-3四组分模型替代物。利用流动反应器,获得了温度为550~1150K,压力为0.1 MPa下RP-3热解数据,基于化学杂化方法 (Hybrid Chemistry),构建了以真实RP-3为单一原始组分的航空煤油化学反应动力学模型(XJTURP3-2021),模型得到宏观点火延迟、层流火焰速度以及微观组分浓度系统验证。基于误差传递的直接关系图法(DRGEP)和全局敏感性分析(FSSA)对模型进行简化,获得含41种组分、212个基元反应的RP-3简化模型(XJTURP3r-2021)。与详细模型和实验数据对比发现,XJTURP3r-2021能较好地复现热力边界对RP-3基础燃烧特征影响规律,为解决CFD仿真对反应源项初始组分数量约束和计算精度固有矛盾提供新思路。  相似文献   
4.
激光诱导击穿光谱(LIBS)是监测燃烧过程关键参数的重要手段之一。为此搭建了LIBS三维可移动实验测量平台,结合等离子体能量和光谱研究了丙烷层流预混火焰的空间结构,得到了不同当量比和不同高度的温度趋势和当量比空间分布。结果表明:本生灯火焰预混燃烧区厚度随高度增加而增加;H、N、O的谱线强度和等离子体能量变化趋势一致,说明粒子体积分数是影响等离子体能量的主因。通过标定H656和N746的谱线强度比值与当量比的关系得到了局部当量比的空间分布。  相似文献   
5.
刘靖  胡二江  黄佐华  曾文 《推进技术》2021,42(2):467-473
为了获得一种新的国产RP-3航空煤油模拟替代燃料的着火延迟特性,在化学激波管中完成了初始压力分别为0.1MPa与0.3MPa,当量比分别为0.5,1.0与1.5,着火温度为1000~1700K条件下该模拟替代燃料着火延迟时间的试验测试,分析了初始压力与当量比对该模拟替代燃料着火延迟时间的影响规律,并与相应工况条件下RP-3航空煤油的着火延迟特性进行了对比分析。结果表明,不同工况条件下,该模拟替代燃料的着火延迟时间的对数与着火温度的倒数呈线性关系;其着火延迟时间随当量比的降低或着火温度、初始压力的升高逐渐缩短;相同工况条件下,该模拟替代燃料的着火延迟时间与RP-3航空煤油的着火延迟时间吻合较好。  相似文献   
6.
为了探寻燃烧室进口空气温度、压力以及油气比对点熄火边界、温升、燃烧效率以及主要排放物摩尔分数的影响规律, 对航空发动机燃烧室在多工况下的点熄火特性、出口温度分布与主要排放物摩尔分数进行了试验测试。分别采用正癸烷的简化 反应机理与C 12 H 23 燃料的单步反应机理,对该燃烧室火焰筒内流场结构、温度场、中间组分与主要排放物摩尔分数分布特性进行了 数值计算,并与相应试验数据进行了对比分析。结果表明:随着燃烧室进口空气温度、压力以及油气比的提高,燃烧室燃烧效率、 温升、出口平均温度与NO X 摩尔分数逐渐提高,而UHC与CO摩尔分数逐渐降低;与采用C 12 H 23 燃料单步反应机理相比,采用正癸 烷的简化反应机理计算得到的火焰筒内流场与温度场分布更为合理,火焰筒出口温度场分布以及主要排放物摩尔分数与相应试 验数据更为接近,计算精度得到较大提高。  相似文献   
7.
RP-3航空煤油层流燃烧特性的实验   总被引:11,自引:6,他引:5  
为了阐明RP-3航空煤油的燃烧特性,在定容燃烧反应器中实验测量了初始压力分别为0.1,0.3,0.5,0.7MPa、初始温度分别为390,420,450K、当量比范围为0.6~1.6时,RP-3航空煤油的层流燃烧速度与马克斯坦长度,分析了初始温度、压力以及当量比对火焰发展结构、层流燃烧速度及马克斯坦长度的影响.结果表明:随着初始温度的升高或初始压力的降低,RP-3航空煤油的层流燃烧速度逐渐升高;随着当量比由0.6升高至1.6,层流燃烧速度呈现先增加后降低的趋势,当当量比为1.2时,层流燃烧速度最大.随着初始压力或当量比的降低,马克斯坦长度逐渐增大,火焰稳定性增强;初始温度对马克斯坦长度的影响不明显,当当量比为0.9~1.1时,随着初始温度的升高,马克斯坦长度逐渐减小,但当当量比为1.2~1.5时,马克斯坦长度则有所增大.   相似文献   
8.
RP-3航空煤油模拟替代燃料的化学反应详细机理   总被引:7,自引:4,他引:3  
在化学激波管中对RP-3航空煤油的着火特性进行了实验测量,获得了多工况下RP-3航空煤油的着火延迟时间.根据RP-3航空煤油的化学组成及物理特性,提出了由体积分数分别为0.65,0.1,0.25的正癸烷、甲苯与丙基环己烷3种组分组成的模拟替代燃料,并形成了该模拟替代燃料的化学反应详细机理.采用该化学反应详细机理对该模拟替代燃料在化学激波管中多工况下的着火特性进行了数值计算,并与实验数据进行了对比分析.结果表明:在不同压力与当量比下,RP-3航空煤油着火延迟时间的对数与着火温度的倒数呈线性关系,并且随着火温度与压力的升高以及当量比的降低,着火延迟时间逐渐缩短;同时,在各工况下采用该化学反应机理计算得到的该模拟替代燃料着火延迟时间与RP-3航空煤油着火延迟时间的实验值吻合良好.   相似文献   
9.
在射流搅拌反应器(JSR)中对压力为0.1 MPa、温度范围为550~1100 K、当量比分别为0.5与1.0、滞留时间为2 s的工况条件下RP-3航空煤油及由正癸烷(摩尔分数为0.14)/正十二烷(0.1)/异十六烷(0.3)/甲基环己烷(0.36)/甲苯(0.1)组成的模型燃料的低温氧化过程进行了试验测试.同时,通...  相似文献   
10.
为了获得天然气的预混湍流燃烧特性,在湍流燃烧弹中对天然气在当量比范围为0.7~1.4、初始压力范围为0.1~0.3 MPa、初始温度范围为300~400 K、湍流强度范围为1.0~2.7 m/s条件下的预混湍流燃烧火焰发展特性进行了试验测试,并分析了当量比、湍流强度、初始温度、初始压力对天然气湍流火焰传播速度、火焰褶皱比以及湍流燃烧速度的影响。结果表明:湍流火焰传播速度随着当量比的升高先增加再降低,在当量比为1.1时达到最大,并且随湍流强度与初始温度的升高而升高,但随初始压力的升高变化不明显。火焰褶皱程度随湍流强度与初始压力的升高或当量比与初始温度的降低而逐渐增强。湍流燃烧速度随当量比的升高先升高后下降,在当量比为1.1时达到最大,并且随湍流强度、初始温度与初始压力的升高而逐渐升高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号