首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
尚东然  刘艳明 《推进技术》2019,40(12):2725-2733
为了研究粗糙度对多级压气机气动特性的影响,采用三维数值模拟软件CFX,对3.5级压气机进行了研究。结果表明,相比于端壁粗糙度,叶片表面粗糙度对压气机性能影响更大;不同转速下,叶片表面粗糙度的增大会造成压气机压比和效率的降低,并且粗糙度增大越快,性能衰退也越快,其中设计转速下粗糙度对压气机的性能影响更大,当叶片表面粗糙度达到50μm时,峰值效率下降了5.25%,对应压比下降了1.33%。前面级叶片表面粗糙度加剧了后面级角区分离和尾迹损失,在压气机性能下降中所占比重更大;而最后一级粗糙度对分离区的影响很小,主要是增加了尾迹掺混造成的损失。单级粗糙度对压气机稳定工作区间影响很小,而全部级粗糙度增大了压气机的稳定工作区间,这是由于粗糙度造成的近失速点处的流量下降相比于堵塞流量的下降程度更大。  相似文献   

2.
以某1.5级高负荷轴流压气机为研究对象,采用经过校核的数值模拟手段详细探究了低雷诺数下表面粗糙度对其气动性能及内部流场的影响.结果表明:相比于光滑叶片,表面粗糙度为137.8时压气机性能提升最为明显,总压比、堵塞流量以及峰值效率分别提升4.01%、2.24%、5.34%.在整个表面粗糙度大小范围内,表面粗糙度布置在吸力...  相似文献   

3.
以某型离心压气机为研究对象,利用流场仿真软件对不同污染程度的压气机性能进行数值计算,对比流场特性的变化,分析了积垢造成压气机性能损失的程度。结果表明:积垢对离心压气机性能的主要影响是降低压气机效率,原因是积垢改变了叶片表面粗糙度,增加了摩擦损失;扩大了叶片后缘和出口附近的低速回流区的范围,增强了回流强度,加大了流动损失。  相似文献   

4.
粗糙度对高/低雷诺数跨声压气机性能的影响   总被引:1,自引:0,他引:1  
以跨声压气机Stage 35为研究对象,针对地面、20 km高空两种雷诺数工况,数值研究了转子压力面、吸力面、整个叶片分别为光滑及5μm、20μm、45μm粗糙度时压气机的性能变化。结果表明:吸力面粗糙度较压力面粗糙度对压气机性能的影响更大;粗糙度对低雷诺数压气机性能的影响小于高雷诺数压气机;相较于粗糙度总是恶化高雷诺数压气机性能,在低雷诺数工况,小幅值粗糙度能改善压气机性能,而大幅值粗糙度恶化压气机性能。当粗糙度为5μm时,压气机峰值效率最大增量为0.79%。  相似文献   

5.
为探究叶片表面粗糙度的变化对压气机气动特性的影响,以某小型GTF涡扇发动机离心压气机为研究对象,在假设粗 糙度均匀分布的前提下分析了离心压气机内部流动细节,数值计算了以30 μm为间隔从30~270 μm共9种不同表面等效砂粒粗糙度ks下的流动特性。结果表明:当叶片表面从光滑状态增大到ks=270 μm时,峰值效率降低4.8%,对应的总压比降低9.4%。通过对离心压气机内部流场分析可知,粗糙度逐步增大使叶片表面附面层厚度增加,诱导吸力面出现流动分离,使叶片尾迹区范围扩大,叶片流动损失增加等。在数值研究的基础上,根据计算结果拟合并校验了离心压气机的总压损失系数?、效率损失系数ζ与叶片表面粗糙度ks的关系式,预测了其性能衰退规律。  相似文献   

6.
为了更好地控制压气机静叶角区分离,结合翼刀和涡流发生器的流动控制思想,提出一种在叶栅通道前缘端壁设置小叶片的新型流动控制手段。以某高负荷轴流压气机叶栅为研究对象,基于数值方法深入分析了不同周向位置和安装角的小叶片对流场的影响。结果表明:小叶片存在提升叶栅气动性能的最佳周向位置和安装角范围。在近失速工况附近,小叶片可减缓角区分离,提高全叶高的扩压能力,但会不可避免地增加中间叶高位置处的流动分离和气动载荷;小叶片可减少角区分离损失和尾迹损失,提高各流向位置处的静压系数。小叶片能阻碍马蹄涡压力面分支发展,减缓叶栅前缘附近的横向二次流动。从小叶片叶顶泄漏的诱导涡可将马蹄涡压力面分支推向流向,带走端壁和角区附近的低能流体,从而削弱通道涡强度。  相似文献   

7.
叶根倒角对微小型离心压气机气动性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究叶根倒角对微小型离心压气机流场及气动性能的影响,对1个带有分流叶片的微小型离心压气机进行数值模拟及理论分析。结果表明:叶根倒角最小角度对主叶片及分流叶片表面的静压分布影响不大,压气机总压比几乎不变,但效率提高明显,最大可提高0.99%。压气机效率的提高,一方面是由于通道涡的削弱减小了损失;另一方面是主叶片吸力面根部附近低速区减小和流线弯曲程度降低,提高了根部附近的流通能力,减少了横向流动,从而减小了二次流的损失。另外,叶根倒角最小角度变大,降低了叶片出口处气流的不均匀性,从而减小了损失。  相似文献   

8.
粗糙度对压气机叶栅损失特性影响的实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了研究粗糙度对压气机叶栅损失特性的影响,采用实验方法研究了三种雷诺数条件下表面粗糙度量级和位置对压气机平面叶栅不同攻角下总压损失特性的影响。叶片表面粗糙度通过贴砂纸的方式改变。对每种雷诺数,定量考察了由叶片表面贴砂纸引起的叶片厚度变化对叶栅攻角-损失特性的影响;对整体粗糙叶片,分析了四种粗糙度量级的影响;讨论了叶片表面局部粗糙度位置的影响。研究表明,定量比较损失时需考虑贴砂纸引起的叶片厚度变化,以加厚光滑叶片作为比较基准。粗糙度量级和位置对叶栅损失特性的影响与雷诺数密切相关,其影响趋势和程度在不同攻角范围内表现出明显的差异。高Re数条件下,当无量纲粗糙度k~+≤14.6时,叶栅性能尚可接受,当k~+≥20.1时,可认为叶栅已基本失效。总体上,叶片前缘和吸力面粗糙度对损失变化的影响最大。Re=1.0×105,-0.6°攻角情况下整体和吸力面前部加粗糙度80μm时,总压损失值相比加厚光滑叶片分别降低了17.3%和23.1%。  相似文献   

9.
轴流压气机大小叶片气动弹性稳定性分析   总被引:1,自引:0,他引:1  
分别采用能量法和时域法对轴流压气机大小叶片进行了气动弹性稳定性分析,获得了叶片的气动模态阻尼比和叶片表面的非定常气动功分布.对叶片的振动位移响应进行了频域分析,并与常规设计转子作了对比.结果表明:大小叶片存在的结构失谐和气动失谐对气动弹性稳定性有明显的影响.气动失谐改善了叶片表面的非定常气动功分布,结构失谐改变了叶间相位角的影响.大小叶片对应的1阶模态振型的气动模态阻尼比为0.000791,而常规设计转子的值为0.000217,大小叶片相对于常规设计转子,不仅改善了气动性能,同时还提高了气动弹性稳定性.   相似文献   

10.
针对砂布轮抛光表面粗糙度工艺控制,提出了工艺参数稳定域和优选区间的概念;通过砂布轮抛光TC11叶片试件的正交试验,建立了表面粗糙度对工艺参数灵敏度的数学模型,分析了工艺参数区间敏感性,获得了工艺参数的稳定域和非稳定域;根据工艺参数对表面粗糙度影响趋势图,得到了工艺参数的优选区间;通过航空发动机叶片抛光试验证明工艺参数优选区间是可靠的,为砂布轮叶片抛光工艺以及进行表面粗糙度控制研究提供理论方法和试验依据。  相似文献   

11.
压气机叶片表面积垢黏附是压气机性能衰退的重要原因。为了提高压气机的清洗效果,合理安排清洗次数,降低发动机使用维护成本,开展积垢对压气机性能影响研究。根据轴流压气机的叶型和几何结构数据建立压气机3维模型,通过增加叶片的厚度模拟积垢黏附在叶片表面后叶型的变化,采用在叶片表面增加较小的随机尺寸的方法高度模拟轴流叶片表面粗糙度的变化。对洁净状态和不同污染状态的轴流压气机性能进行数值模拟计算,仿真结果表明:在相同转速下,随着压气机叶片污染程度的加重,压气机的压比和效率都会下降;转速越大,积垢会使压气机流量减小越明显,且入口压差是对积垢最敏感的压气机参数。  相似文献   

12.
处理机匣/压气机非定常相互作用分析   总被引:1,自引:1,他引:0  
实验研究了三个不同槽数圆弧斜槽处理机匣对压气机气动性能的影响,实验结果显示,只有当处理槽数确定的处理机匣/压气机非定常相互作用频率锁定在压气机分离绕流流场非定常特征频率附近时,处理机匣才能展示出满意的扩稳能力.实验利用25孔总压耙测量压气机静子出口S3流面总压流场结构,测量结果表明,处理机匣/压气机非定常相互作用不但大幅度改善了压气机分离绕流流场结构,还影响了压气机总压升径向分布.   相似文献   

13.
利用多尺度法对某型航空发动机压气机盘进行模拟仿真,通过建立宏观和微观分析模型,分析了典型工况下盘件的受载情况,研究了表面粗糙度对压气机盘疲劳性能的影响,得到了表面粗糙度与局部最低寿命和局部相对寿命的关系,为压气机盘的设计和修理提供了理论支撑。  相似文献   

14.
由于叶片前后缘(LTE)的轮廓形状和表面质量将对航空发动机的气动性能和叶片的疲劳性能产生直接影响,因此为提高前后缘的轮廓度和表面质量,通过对目前航空发动机叶片前后缘抛光所存在的问题进行分析,结合叶片前后缘抛光工艺要求,并基于自由式砂带抛光的工艺特点,提出了叶片前后缘自由式砂带抛光工艺方法;针对该抛光工艺方法,建立其砂带张紧力控制系统,确定了抛光加工中的砂带走刀步长计算公式及抛光轨迹规划方法;最后以某型号叶片的前后缘作为加工对象进行抛光实验研究。检测结果显示:叶片前后缘轮廓度误差小于0.01mm,其表面粗糙度小于0.4μm,证实了该抛光工艺方法对提高叶片前后缘的轮廓度和表面质量的有效性。  相似文献   

15.
基于数值优化方法的跨声速压气机掠动叶设计   总被引:13,自引:1,他引:13       下载免费PDF全文
伊卫林  黄鸿雁  韩万金 《推进技术》2006,27(1):33-36,51
开发了求解雷诺平均N-S方程的三维流场模拟程序和数值优化程序,对流场求解程序进行了实验验证,并对跨声速压气机动叶弦向掠进行了优化设计。优化所得前掠叶片可以有效地改善端壁附近流动状况,削弱激波强度,减少尾迹损失,提高整体效率,但叶展中部流动恶化。优化后的叶片改善了压气机变工况性能。结果表明,该优化设计方法是可行的。  相似文献   

16.
压气机叶片前缘形状的改进设计   总被引:13,自引:1,他引:12  
本文使用数值模拟方法研究了压气机叶片前缘形状对叶片气动性能的影响。来流环绕圆弧形前缘表面发生过度膨胀形成吸力峰; 当来流湍流度和雷诺数较低时, 会导致前缘层流分离。虽然椭圆形前缘可以减弱吸力峰, 提高叶片气动性能, 但是椭圆形前缘加工困难, 费用较高, 有鉴于此, 本文设计了易于加工的新型前缘形状—带平台的圆弧形前缘, 它可以明显减弱吸力峰, 达到与椭圆形前缘 (a/b=2)相近的改善叶片气动性能的效果。   相似文献   

17.
基于动叶污垢沉积的数值模拟   总被引:2,自引:1,他引:1  
采用三维数值方法研究了污垢沉积对压气机动叶性能的影响.对具有一定典型性的真实压气机动叶NASA Rotor 37进行数值研究,通过与文献中实验数据的对比,校核了商业CFD(computational fluid dynamics)计算代码的可靠性,结果表明计算得到的性能曲线与实验数据有较好的一致性,应用于数值模拟手段是可行的.随后通过增加叶片和端壁的表面粗糙度和厚度来模拟不同的污垢沉积程度对压气机动叶性能的影响,结果表明:增加叶片厚度和表面粗糙度都将引起总压比和等熵效率降低;增加表面粗糙度将导致流量下降,稳定工况范围向小流量方向移动;而增加叶片厚度将使得稳定工况范围明显减小,堵点流量下降较显著,这将导致动叶工作特性恶化程度增大.   相似文献   

18.
高压压气机出口级叶型加工偏差特征及其影响   总被引:2,自引:0,他引:2  
刘佳鑫  于贤君  孟德君  史文斌  刘宝杰 《航空学报》2021,42(2):423796-423796
以高压压气机出口级叶片叶中截面作为研究对象,获得了实际压气机叶片加工偏差的分布特征,并分析了实际加工偏差对叶型气动性能的影响。以此为基础,研究了加工偏差对叶型性能的影响机理。研究结果表明,实际叶型加工偏差存在一定的系统性偏差,从而导致实际叶型气动性能的平均值偏离设计值。叶型偏差对叶型气动性能的影响存在一定的非线性效应,这在前缘区域更为明显,从而导致了平均叶型的气动性能与实际叶型平均性能出现了明显偏差。前缘附近的几何偏差对吸力面和压力面的速度峰值有较大的影响,因此前缘附近的偏差是使叶型的气动性能产生系统性偏差和增大不确定度的主要因素。根据对流动机理的分析,进口几何角偏差是导致叶型性能出现系统性偏差的主要原因;可以近似用均匀偏差来估计叶身加工偏差对正负攻角范围和损失的影响。  相似文献   

19.
为了探究低雷诺数Re下粗糙度Ra对一高亚声速压气机叶型气动性能的影响,在其吸力面布置三种粗糙度分布,每种分布对应15种粗糙度大小。在Re=1.5×10~5时,利用数值模拟手段详细对比了不同粗糙度分布及大小下压气机叶片吸力面边界层分离、转捩规律,揭示了低Re下粗糙度调控压气机叶型边界层发展特性的机理。研究表明,三种粗糙度分布下,叶型损失随粗糙度大小的变化趋势类似。在转捩粗糙区,吸力面分离泡"位移效应"对叶型性能的不利影响随粗糙度增大而被抑制乃至完全消除,Ra=157μm时叶型损失最大分别降低10.16%,16.4%,15.58%;在完全粗糙区,随粗糙度进一步增大,强烈的湍流耗散作用反而致使叶型性能不断下降。在整个粗糙度大小范围内,粗糙度布置在吸力面前缘到转捩点之间时对边界层调控效果较好,能够较大限度地提升低Re下压气机叶型的气动性能。  相似文献   

20.
在实际使用过程中,压气机容易由于腐蚀磨损等原因导致叶片表面粗糙度增加,这将使得整级压气机的气动性能下降。与此同时,由轮毂横向流所诱发的角区分离也将造成巨大的流动损失。为了探究叶表粗糙度变化是否会促进角区分离的产生,以及粗糙度变化对压气机内损失类型的影响,借助CFX商用软件对低雷诺数扩压叶栅展开数值计算研究。同时,还引入Gamma模型来研究粗糙度变化对转捩的影响。研究发现,叶片表面粗糙度的增加将使得分离转捩和旁路转捩加强,但对逆转捩影响较小。此外,借助损失源分析方法,将叶栅内的损失分为前缘损失、叶型摩擦损失、二次流损失和尾迹损失。结果表明,在角区分离严重且表面等效砂砾粗糙度增加到50μm时,相比于光滑情况,其总损失增加了9.6%。借助拓扑分析,可以发现随粗糙度增加,前缘分离泡不断前移,扰乱前缘部分流动,由此导致的前缘损失随粗糙度变化最为明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号