首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
航空   2篇
  2019年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
在实际使用过程中,压气机容易由于腐蚀磨损等原因导致叶片表面粗糙度增加,这将使得整级压气机的气动性能下降。与此同时,由轮毂横向流所诱发的角区分离也将造成巨大的流动损失。为了探究叶表粗糙度变化是否会促进角区分离的产生,以及粗糙度变化对压气机内损失类型的影响,借助CFX商用软件对低雷诺数扩压叶栅展开数值计算研究。同时,还引入Gamma模型来研究粗糙度变化对转捩的影响。研究发现,叶片表面粗糙度的增加将使得分离转捩和旁路转捩加强,但对逆转捩影响较小。此外,借助损失源分析方法,将叶栅内的损失分为前缘损失、叶型摩擦损失、二次流损失和尾迹损失。结果表明,在角区分离严重且表面等效砂砾粗糙度增加到50μm时,相比于光滑情况,其总损失增加了9.6%。借助拓扑分析,可以发现随粗糙度增加,前缘分离泡不断前移,扰乱前缘部分流动,由此导致的前缘损失随粗糙度变化最为明显。  相似文献   
2.
李兰攀  楚武利  张皓光 《推进技术》2017,38(12):2743-2752
为了改善压气机端壁区流动状况,减小流动损失,对一大尺度低速(不可压)压气机叶栅设计了五种倒圆结构。通过Numeca全三维数值方法进行模拟,结果表明,在原叶栅失速工况下,损失降低最多的达到了5.22%,但在设计工况下增加了1.12%。分析了此叶栅端壁区性能及流场改善的机理,给出了其余四种结构效果不佳的原因。对于效果最好的叶栅,倒圆的存在将失速因子降低了41.29%,使其能够适应更大的来流攻角范围。近端壁处吸力面的流动分离得到明显抑制,马蹄涡强度和逆流区减小,出口流动更加均匀,二次流能量显著减小,从而在整体上降低了损失,改善了角区流动。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号