首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
金鼎  张炜  艾俊强 《飞行力学》2011,29(1):5-8,12
针对一种飞翼布局折叠机翼变体飞机方案,建立了相应的研究模型,使用涡格估算方法计算出机翼折叠角度对全机纵向静稳定性的影响.利用飞机纵向小扰动运动方程,分别得到了机翼展开和折叠状态的长、短周期模态,并对其动稳定性进行了讨论.结合工程估算方法和风洞试验方法,计算出内段机翼折叠过程全机力矩系数、升降舵操纵导数以及升降舵配平偏角...  相似文献   

2.
飞翼布局无人机着舰飞行动力学分析   总被引:1,自引:0,他引:1       下载免费PDF全文
飞翼布局无人机具有独特的气动特性,研究飞翼布局无人机着舰飞行动力学特性对设计无人机着舰控制律具有重要意义。针对飞翼布局无人机着舰下滑飞行过程,建立六自由度飞行动力学模型,并通过对着舰飞行轨迹稳定性的分析,根据飞行品质对飞行轨迹稳定性的约束,计算达到一级飞行品质要求的着舰飞行速度。通过配平计算和小扰动线性化处理,得到无人机着舰下滑运动线性模型,并分析无人机纵向和横航向的固有模态特性。结果表明,飞翼无人机着舰下滑过程中,纵向的长、短周期模态及横航向的滚转和螺旋模态收敛但收敛慢,荷兰滚模态发散。  相似文献   

3.
Z型翼变体飞机的纵向多体动力学特性   总被引:3,自引:0,他引:3  
乐挺  王立新  艾俊强 《航空学报》2010,31(4):679-686
机翼变形时,变体飞机的翼面积、惯性特性、全机焦点和重心位置等均会发生较大的变化,从而引起飞机的动态特性也随之改变。为此对机翼变形过程中的Z型翼变体飞机进行了纵向多体动力学建模仿真;推导了变形过程中变体飞机的六自由度非线性动力学方程,并通过简化得到了解耦后的纵向动力学方程。机翼折叠动态过程的气动特性数值模拟结果表明,不同折叠角速度下飞机的气动力相差不大。在机翼折叠角速度较小且忽略非定常气动效应的情况下,采用气动力准定常假设对变形过程中不同机翼折叠角速度下变体飞机的纵向响应进行了数值仿真,并研究了重心位置移动和气动特性变化对飞机变形过程动态特性的影响规律。结果表明,折叠过程中气动特性的变化是影响飞机动态特性的主要因素,机翼折叠后飞机的速度和迎角增加,且飞行高度下降较大。  相似文献   

4.
吕新波  刘振钦 《飞行力学》2011,29(2):10-12,16
经计算并和常规布局大型飞机对比分析,给出了盒式机翼布局大型飞机的气动特点;然后研究了盒式机翼布局大型飞机本体横航向飞行品质;针对盒式机翼布局本体飞机横航向飞行品质较差的问题,研究了提高盒式机翼布局飞机横航向飞行品质的有效方法.研究结果表明:盒式机翼布局大型飞机具有良好的升阻特性和特殊的横航向气动特性;修改布局参数对提高...  相似文献   

5.
为适应不同飞行状态,设计了一种机翼可纵向滑移的变体飞机,并分析了在变体过程中的纵向气动特性与纵向稳定性。通过FLUENT UDF动网格技术,计算得到飞机机翼以不同速度滑移的变体过程中纵向气动力和力矩系数的变化情况,据此定性分析机翼滑移速度对纵向气动力和力矩系数的影响;通过研究飞机变体过程中焦点与重心的位置变化曲线,分析飞机在变体过程中的稳定性。结果显示:变体过程中机翼低速滑移时,滑移速度对纵向气动力和力矩系数影响不大;飞机在变体过程中由纵向稳定飞行状态变为不稳定飞行状态。  相似文献   

6.
小展弦比飞翼布局飞机稳定特性   总被引:3,自引:1,他引:3  
李林  马超  王立新 《航空学报》2007,28(6):1312-1317
 飞翼布局飞机为改善隐身特性,取消了平尾和垂尾,构型的改变导致其稳定特性与常规飞机有很多不同。针对小展弦比飞翼布局飞机,分别研究其在几种典型飞行状态下的纵向和横航向的静、动稳定特性,通过与常规布局飞机进行对比,着重揭示了飞翼构型参数、飞行状态与其稳定性间的量化规律,并详细分析了这一布局纵向短周期模态及横航向荷兰滚模态发散的具体成因。  相似文献   

7.
飞翼布局无人机进排气效应风洞试验研究   总被引:1,自引:0,他引:1  
飞机进排气会对全机气动性能产生明显的影响.采用引射式动力模拟器对飞翼布局无人机开展进排气效应模拟,分析进排气对全机气动特性的影响.试验结果表明:进排气对飞翼布局升力影响不明显,对阻力影响量比较大,可使全机最大升阻比降低1~4左右,而喷流能使全机最大升阻比下降1~1.8左右,进排气效应使得全机俯仰力矩增加,但纵向静安定度基本不变;进排气对全机横航向特性影响不大,对襟翼效率影响也甚微.可作为飞翼无人机气动布局设计的参考.  相似文献   

8.
刘志涛  蒋永  聂博文  岑飞  徐圣 《航空学报》2021,42(6):124179-124179
为提升无尾飞翼布局飞机航向控制能力,以典型飞翼布局飞机模型为研究对象设计了翼尖可绕弦线方向偏转结构。基于FL-14风洞单自由度动态试验系统开展了静态和动导数试验,研究了飞翼布局飞机基本气动特性及翼尖偏转对全机气动特性的影响。结果表明:无尾飞翼布局飞机航向呈静不稳定,航向动稳定性极弱,航向增稳设计及控制很有必要;翼尖偏转有助于增强飞机的航向静、动稳定性,并很好地解决了传统阻力类舵面航向增稳时导致全机升阻比下降气动效率降低的问题;翼尖偏转能够有效改善飞翼布局飞机恶化的荷兰滚模态使之趋近于常规布局飞机模态,这有利于简化飞机横航向控制律设计方法。弯折翼尖结构具有舵面少、效率高的特点,是航向增稳的有效手段,具有应用价值。  相似文献   

9.
绕三角翼纵向俯仰大迎角气动特性计算研究   总被引:2,自引:0,他引:2  
杨立芝  高正红 《航空学报》2003,24(5):414-416
 采用数值计算方法, 对三角翼从0°上仰至90°的动态流场结构进行了计算, 在此基础上, 对三角翼在上仰过程中受到横侧小扰动情况下的流场结构和气动力特性进行了计算研究。给出了三角翼纵向动态情况下的气动力系数变化, 特别是大迎角横侧力矩系数的变化特征, 并对受到横侧小扰动后横侧运动的稳定性进行了计算与分析。结果表明, 机翼的上仰运动延迟了机翼上翼面旋涡的破裂。同时, 随着机翼俯仰角速度的提高, 机翼抵抗旋涡非对称破裂的能力明显增强, 机翼运动的稳定性也明显提高。  相似文献   

10.
飞翼布局横航向气动导数的总体估算方法研究   总被引:1,自引:0,他引:1  
根据飞机设计初级阶段所得到的总体布局参数,建立并估算飞翼布局横航向气动导数的数值计算模型,对模型进行了算例分析,与计算流体力学方法(CFD-FASTRAN)、风洞实验所得的横航向气动导数做了对比分析.结果表明,基于总体布局参数估算的横航向气动导数简洁、快速、合理.  相似文献   

11.
旋翼固定翼复合式垂直起降飞行器概念设计研究   总被引:2,自引:1,他引:2  
近些年来垂直起降(VTOL)飞行器发展迅速,并获得了一些突破性进展,但仍有许多尚未解决的问题。结合旋翼机和固定翼飞机的优点,提出一种旋翼固定翼复合式飞行器布局方案,兼具优异的垂直起降性能及高速飞行能力,具有转换过渡稳定平滑、可控性强的特点。在该旋翼固定翼复合式布局中,特型旋翼可旋转以提供垂直升力,也可停转、锁定与固定式机翼保持平行,最终转换为固定翼面使得飞机转换为固定翼布局,并在机翼上布置矢量推力装置,实现高速飞行。概念设计研究围绕设计方法、特型旋翼、矢量推力系统等关键技术展开,并开展了平飞模式飞行特性、垂直起降模式飞行特性、航程、航时以及飞行操纵等性能的分析。通过试制小型原理验证机,并对各飞行状态及转换过渡飞行进行飞行试验,验证了该布局的可行性。结合实际算例展开分析计算,验证了该方案设计方法的准确性和实用性。  相似文献   

12.
杜思亮  唐正飞 《航空动力学报》2017,32(11):2743-2751
基于对扇翼飞行器升推力产生机理的数值计算与分析,提出了一种扇翼飞行器机翼的替代方案——吹气机翼。分析了扇翼机翼升推力的产生机理并在扇翼机翼翼型的基础上构建了吹气机翼翼型。建立了两种机翼翼型的数值计算方法,通过对比相对静压分布曲线、速度云图和压力云图,证明了吹气机翼具有与扇翼机翼一样的升推力产生方式,即涡致升推力的形成机制。通过将横流风扇加速后气流流速定义为吹气机翼吹气速度,对比了两种机翼升推力随来流速度和迎角的变化关系。结果表明:两种机翼的升推力变化趋势基本一致,仅在迎角大于20°时,吹气机翼推力值相较扇翼机翼损失了近5倍。总体而言,在常规飞行状态下,吹气机翼能够替代扇翼机翼,为相关飞行器的增升和优化设计提供了一种思路。   相似文献   

13.
串列翼飞行器由于其前后翼以及机身之间的相互干扰,气动特性复杂且难以预测。针对一款串列翼飞行器,以前后翼之间的垂直距离为变量,设计了五种气动布局,并使用CFD方法进行了数值模拟计算。通过对五种布局升阻特性与俯仰特性的比较及分析,发现前后翼垂直方向距离会显著影响整机升阻比、俯仰稳定性、气动中心位置以及压力中心位置。两翼间垂直方向上的距离越大,飞行器升阻比越高,且气动中心更加靠后。而在两翼间距离相同的情况下,前翼在下的布局拥有更高的升阻比,而前翼在上的布局拥有更好的俯仰静稳定性。  相似文献   

14.
The analysis of the passive rotation feature of a micro Flapping Rotary Wing(FRW)applicable for Micro Air Vehicle(MAV) design is presented in this paper. The dynamics of the wing and its influence on aerodynamic performance of FRW is studied at low Reynolds number(~10~3).The FRW is modeled as a simplified system of three rigid bodies: a rotary base with two flapping wings. The multibody dynamic theory is employed to derive the motion equations for FRW. A quasi-steady aerodynamic model is utilized for the calculation of the aerodynamic forces and moments. The dynamic motion process and the effects of the kinematics of wings on the dynamic rotational equilibrium of FWR and the aerodynamic performances are studied. The results show that the passive rotation motion of the wings is a continuous dynamic process which converges into an equilibrium rotary velocity due to the interaction between aerodynamic thrust, drag force and wing inertia. This causes a unique dynamic time-lag phenomena of lift generation for FRW, unlike the normal flapping wing flight vehicle driven by its own motor to actively rotate its wings. The analysis also shows that in order to acquire a high positive lift generation with high power efficiency and small dynamic time-lag, a relative high mid-up stroke angle within 7–15° and low mid-down stroke angle within -40° to -35° are necessary. The results provide a quantified guidance for design option of FRW together with the optimal kinematics of motion according to flight performance requirement.  相似文献   

15.
《中国航空学报》2016,(5):1226-1236
Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Par-ticle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal varia-tions of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With fur-ther backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.  相似文献   

16.
Recent developments in neuroelectronics are applied to aviation and airplane flight control instruments. Electromyographic control has been applied to flight simulations using the autopilot interface in order to use gestures to give bank and pitch commands to the autopilot. In other demonstrations, direct rate control was used to perform repeated successful landings and the damage-adaptive capability of inner-loop neural and propulsion-based controls was utilized.  相似文献   

17.
When the wing of Oblique Wing Aircraft (OWA) is skewed, the center of gravity, inertia and aerodynamic characteristics of the aircraft all significantly change, causing an undesirable flight dynamic response, affecting the flying qualities, and even endangering the flight safety. In this study, the dynamic response of an OWA in the wing skewing process is simulated, showing that the three-axis movements of the OWA are highly coupled and present nonlinear characteristics during the wing skewing. As the roll control efficiency of the aileron decreases due to the shortened control arm in an oblique configuration, the all-moving horizontal tail is used for additional roll and the control allocation is performed based on minimum control energy. Given the properties of pitch-roll-yaw coupling and control input and state coupling, and the difficulty of establishing an accurate aerodynamic model in the wing skewing process due to unsteady aerodynamic force, a multi-loop sliding mode controller is formulated by the time-scale separation method. The closed-loop simulation results show that the asymmetric aerodynamics can be balanced and that the velocity and altitude of the aircraft maintain stable, which means that a smooth transition is obtained during the OWA’s wing skewing.  相似文献   

18.
19.
《中国航空学报》2021,34(2):201-216
In this paper, the effects of twist angle variation on aerodynamic coefficients and flow field on the wing with wing smarting approach are studied using numerical simulation. The simulation was performed using incompressible Reynolds-Averaged Navier-Stokes (RANS) equations based on the two-equation k-ω Shear Stress Transport (SST) turbulent model for flow speed 30 m/s and a Reynolds number of 69000. Investigations have been carried out for several twist angles and at a specific range of angles of attack. The twist applied is the type of geometric twist (wash-out), which is linearly distributed along the span. The test case is a lambda-shaped tailless aircraft with a wing fracture on the trailing edge, and a sweep angle 56°. The results show that with increasing twist angle, the aerodynamic efficiency improves over a wide range of angles of attack, but at 0° angle of attack it will decrease significantly. By increasing the angle of attack, the effect of twist on the flow field and aerodynamic coefficients will gradually decrease; hence, at a certain amount of angle of attack, the effect of twist will stop, that angle is called the neutral brink angle. Longitudinal stability analysis shows that by growing the twist angle, the conditions required for longitudinal stability are satisfied, and the pitch-up phenomenon will be delayed.  相似文献   

20.
Recent progress in flapping wing aerodynamics and aeroelasticity   总被引:3,自引:0,他引:3  
Micro air vehicles (MAVs) have the potential to revolutionize our sensing and information gathering capabilities in areas such as environmental monitoring and homeland security. Flapping wings with suitable wing kinematics, wing shapes, and flexible structures can enhance lift as well as thrust by exploiting large-scale vortical flow structures under various conditions. However, the scaling invariance of both fluid dynamics and structural dynamics as the size changes is fundamentally difficult. The focus of this review is to assess the recent progress in flapping wing aerodynamics and aeroelasticity. It is realized that a variation of the Reynolds number (wing sizing, flapping frequency, etc.) leads to a change in the leading edge vortex (LEV) and spanwise flow structures, which impacts the aerodynamic force generation. While in classical stationary wing theory, the tip vortices (TiVs) are seen as wasted energy, in flapping flight, they can interact with the LEV to enhance lift without increasing the power requirements. Surrogate modeling techniques can assess the aerodynamic outcomes between two- and three-dimensional wing. The combined effect of the TiVs, the LEV, and jet can improve the aerodynamics of a flapping wing. Regarding aeroelasticity, chordwise flexibility in the forward flight can substantially adjust the projected area normal to the flight trajectory via shape deformation, hence redistributing thrust and lift. Spanwise flexibility in the forward flight creates shape deformation from the wing root to the wing tip resulting in varied phase shift and effective angle of attack distribution along the wing span. Numerous open issues in flapping wing aerodynamics are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号