首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 565 毫秒
1.
为探究上游尾迹影响下的涡轮动叶前缘气膜冷却特性,采用压力敏感漆技术,研究了尾迹对涡轮动叶前缘带有三排径向复合角圆柱形气膜孔的气膜冷却效率的影响,获得了不同吹风比(1.0~3.0)和尾迹斯特劳哈尔数(0,0.12,0.36)条件下前缘区域全表面气膜冷却效率分布的实验数据。结果表明:有尾迹时,随着吹风比的增加,叶片前缘大部分区域气膜冷却效率逐渐增加,仅有压力面侧气膜孔附近冷却效率逐渐降低。随着尾迹斯特劳哈尔数增加,前缘靠近压力面侧孔排下游的径向平均气膜冷却效率最大增加幅度达0.07,前缘正中间孔排附近径向平均气膜冷却效率最大降低幅度达0.13,前缘靠近吸力面侧孔排下游的径向平均气膜冷却效率最大降低幅度达0.18。整体看来,尾迹使前缘大部分区域气膜冷却效率降低。  相似文献   

2.
陈大为  朱惠人  李华太  刘海涌  周道恩 《航空学报》2019,40(3):122651-122651
采用压敏漆(PSP)测量技术研究了尾迹对涡轮动叶气膜冷却效率的影响,测试叶片带有11排圆柱形气膜孔。获得了不同质量流量比和尾迹斯特劳哈尔数(Sr=0,0.12,0.36)条件下全表面气膜冷却效率分布的试验数据,结果表明:随着尾迹Sr数的增加,叶片前缘区域径向平均气膜冷却效率最大降低幅度达36.5%,吸力面径向平均气膜冷却效率最大降低幅度达53.5%,压力面径向平均气膜冷却效率最大降低幅度达24.2%;尾迹对前缘和吸力面气膜冷却效率的影响大于压力面;随着质量流量比增加,尾迹的影响减小;在进行涡轮动叶表面气膜冷却结构设计时,不考虑尾迹效应会增加设计风险。  相似文献   

3.
亚声速涡轮导叶全气膜冷却特性实验研究   总被引:3,自引:2,他引:1       下载免费PDF全文
为了获得亚声速涡轮导叶的全气膜冷却特性,在短周期高速风洞中对全气膜覆盖涡轮导叶实验件进行了实验,获得了涡轮叶片表面在不同主流雷诺数(Re=3.0×10~5~9.0×10~5)、二次流质量流量比(MFR=5.5%~12.5%)和主流湍流度(Tu=1.3%,14.7%)下的气膜冷却效率分布。实验叶片前缘有5排复合角度圆柱形气膜孔形成前缘喷淋冷却结构,压力面和吸力面分别有6排和3排圆柱形气膜孔。结果表明:在本文研究的质量流量比范围内,涡轮叶片压力面和吸力面的气膜冷却效率随着质量流量比的增大而减小,而前缘区域的冷却效率随质量流量比的增大而增大;雷诺数的变化主要影响叶片压力面相对弧长S/Smax-0.6区域的冷却效率分布,在高雷诺数(Re=9.0×10~5)下,大质量流量比的冷却效率最高,而在中低雷诺数(Re=3.0×105,6.4×105)下,小质量流量比的冷却效率最高;叶片前缘气膜冷却效率受主流湍流度升高的影响较小,而在压力面和吸力面冷却效率均随着湍流度的升高而降低。  相似文献   

4.
亚声速涡轮导叶前缘气膜冷却特性实验研究   总被引:3,自引:3,他引:0       下载免费PDF全文
为了获得亚声速涡轮导叶的前缘气膜冷却特性,在短周期高速风洞中对涡轮导叶前缘后倾扩张型孔气膜冷却试验件进行了实验,获得了涡轮叶片表面在不同主流雷诺数(Re=3.0×10~5~9.0×10~5)、二次流吹风比(M=0.5~2.4)和主流湍流度(Tu=1.3%,14.7%)下的气膜冷却效率和换热系数分布。实验叶片前缘有8排后倾扩张型气膜孔形成前缘喷淋冷却结构。结果表明:叶片前缘和压力面冷却效率随着吹风比的增大而升高,吸力面冷却效率随着吹风比的增大先升高后降低,最佳吹风比为0.8;在主流雷诺数(Re=3.0×10~5~9.0×105),改变雷诺数对叶片表面冷却效率的分布规律影响较小;叶片表面冷却效率随着湍流度的升高而降低,在小吹风比M=0.5下,高主流湍流度下的平均冷却效率降低50%左右,在M=2.4工况下,高湍流度下的平均冷却效率降低10%左右;叶片前缘冷气出流区域和压力面相对弧长为-0.4S/Smax-0.3的冷气重新贴附壁面区域换热系数比较高;高主流湍流度下,换热系数比较小,且吹风比变化对换热系数比的影响较小。  相似文献   

5.
付仲议  朱惠人  姜茹  程李坚 《推进技术》2019,40(7):1585-1593
为了研究高主流湍流度下二次流密度比对涡轮导叶全气膜冷却特性的影响,使用热色液晶测量了在主流湍流度为15%,二次流密度比为1.0和1.5下三维涡轮导叶的气膜冷却效率和换热系数。二次流与主流质量流量比为7.0%和12.5%。结果表明:二次流密度比增大可以降低冷气射流的动量,小流量比工况下,在叶片前缘和压力面前半段,动量较低的二次流在高主流湍流度的影响下更易耗散,增大二次流密度比使冷却效率明显降低;大流量比工况下,二次流动量降低使气膜孔后区域冷气贴附性增强,气膜冷却效率和冷气覆盖效果均得到提升。小流量比工况下,二次流密度比增大对叶片表面换热的影响较小;大流量比工况下,二次流密度比增大使吸力面中弦区域和压力面后半段的平均换热系数比分别降低15%和25%。  相似文献   

6.
为了评估涡轮导叶的前缘喷淋射流对压力面多排气膜孔冷却特性的影响,在高亚声速风洞中进行了实验,获得了有无前缘喷淋射流时叶片表面的气膜冷却效率和传热系数。叶栅进口雷诺数(基于叶片弦长)范围为2.0×105~4.0×105,出口等熵马赫数为0.95,叶片前缘和压力面分别都包含6排圆形孔,质量流量比的范围分别为2.46%~4.57%和2.00%~3.71%。实验结果表明:在没有前缘喷淋射流时,压力面前半段的气膜冷却效率受质量流量比的影响较小,而后半段的气膜冷却效率随着质量流量比升高而增大。前缘喷淋射流使压力面多排气膜孔的冷却效率提高了20%~70%,并且使气膜冷却效率沿流向分布更均匀。不论是否有前缘喷淋射流,压力面的传热系数比都随质量流量比升高而增大,沿流向看,前缘喷淋射流提高了压力面前缘和尾缘区域的传热系数比而对压力面中间区域影响较小。  相似文献   

7.
针对带扇形气膜孔的三维弯扭的高压涡轮一级导叶,采用压力敏感漆传质类比测量技术,研究了不同密度比与质量流量比下叶片的全表面气膜冷却效率分布特性。结果表明:叶片气膜冷却效率随密度比和质量流量比的增加而增大,冷气密度比从1.0增加到2.0时,叶片展向平均气膜冷却效率提升6%~32%。气膜冷却效率随密度比呈现非线性的变化,冷气密度比从1.0增加到1.5时,气膜冷却效率的增幅较小,密度比从1.5增加到2.0时,气膜冷却效率的增幅较大。  相似文献   

8.
旋转对弯扭涡轮叶片前缘气膜冷却的影响   总被引:1,自引:0,他引:1  
基于热色液晶(TLC)测温技术,开展了转速(攻角)和吹风比对弯扭涡轮叶片前缘区域气膜冷却效率分布影响的实验研究。实验中涡轮转速分别为400 r/min(正攻角)、550 r/min(零攻角)和700 r/min(负攻角),平均吹风比为0.5~1.25。冷却工质采用氮气,对应的射流-主流密度比为1.04。基于涡轮动叶弦长的涡轮出口主流雷诺数为60 800。实验结果表明:转速是决定涡轮叶片前缘气膜冷却效率分布最重要的参数之一。随着转速的增大,滞止线的位置会从压力侧(PS)移动到吸力侧(SS)。当吹风比相同时,面平均气膜冷却效率随转速的增大而逐渐增大;当转速相同时,面平均气膜冷却效率随吹风比的增大而增大。   相似文献   

9.
跨声速涡轮静子端壁气膜冷却数值研究   总被引:1,自引:0,他引:1  
对跨声速涡轮静子端壁气膜冷却进行了数值研究。研究发现涡轮静子端壁存在几个强换热区域:叶片前缘马蹄涡及前缘马蹄涡区域、吸力面马蹄涡分支覆盖区域、通道中靠近压力面侧和尾缘附近及尾缘后区域。针对端壁区域复杂的换热分布,设计了1种新型端壁全气膜冷却布置。通过数值研究对比了在不同进口吹风比情况下的壁面Nu、壁面气膜冷却效果和壁面热负荷。结果表明:存在最佳的进口吹风比,即在前缘Minlet=1.0时,尾缘Minlet=4.0时,端壁区域冷却效果最好。  相似文献   

10.
温比对第一级导叶端壁气膜冷却特性的影响   总被引:1,自引:0,他引:1  
利用高温风洞及远红外热像技术,在两种主燃气与冷气温比(TR)(1.64、2.68)和4种气膜注射吹风比(BR)(0.6、1.0、1.5、2.0)下,研究了导叶端壁十排复合角度圆形气膜孔的综合冷却效率。对比高、低温比下的实验结果发现:(1)在无气膜时,端壁前缘的最高温点会因主流温度的提高而更靠近叶片前缘;(2)气膜出流时,端壁近吸力面区域冷却效率高于近压力面区域,冷却效率随BR的提高而不断增大,且BR从1.0增加到1.5时,冷却效率增幅最明显;(3)在同一BR下,端壁的综合冷却效率会随TR的增加而提高,但随着BR的不断加大,TR对端壁平均冷却效率的影响逐渐减小,即:相比于TR为1.64下的面平均冷却效率,TR为2.68工况下的平均冷却效率在BR为0.5时可提高18.2%,而在BR为2.0时,其只相对提高了8.8%。  相似文献   

11.
为了研究前缘射流对吸力面多排气膜孔下游冷却特性的影响,在跨声速风洞中进行了实验并采用热电偶获得了气膜冷却效率和换热系数。叶栅进口雷诺数的范围为2.0×105 ~ 4.0×105,出口等熵马赫数为0.95,叶栅前的湍流度小于5%。前缘布置6排对冲圆柱孔,质量流量比的范围为2.00% ~ 3.71%,吸力面布置4排圆柱孔,质量流量比的范围为2.02% ~ 3.74%。实验结果表明:在没有前缘射流时,吸力面的气膜冷却效率随质量流量比增大先升高后下降,存在前缘射流时,质量流量比对气膜冷却效率的影响较小。对所有的工况而言,质量流量比增大都提高了吸力面的换热系数。相比于没有前缘射流的工况,前缘射流显著提高了吸力面孔排附近区域的气膜冷却效率并略微降低了换热系数;在吸力面后半段,前缘射流显著提高了换热系数而对气膜冷却效率影响较小。总的来说,前缘射流改善了吸力面孔排附近区域的冷却效果,但是恶化了吸力面后半段区域的冷却效果。  相似文献   

12.
付仲议  朱惠人  姜茹  程李坚 《推进技术》2021,42(9):2028-2037
为了研究涡轮导叶W型孔全气膜冷却效率的分布规律,使用热色液晶测量了在流量比为5.5%、8.4%和12.5%,主流湍流度为1%、9%和15%下W型孔全气膜涡轮导叶的气膜冷却效率,并与相同工况下的圆柱型孔全气膜叶片的冷却效率结果进行了对比。结果表明:在低湍流度下,流量比变化对W型孔叶片不同区域冷却效率的影响规律不同;而在高湍流度下,流量比增大使W型孔叶片的冷却效率整体升高;在本文研究的所有流量比下,W型孔叶片的冷却效率均随着湍流度的升高而降低;与圆柱型孔叶片相比,在中低湍流度下,W型孔的冷气壁面贴附性和展向覆盖效果更好,W型孔叶片的冷却效率具有明显优势,然而在高湍流度下由于W型孔的冷气速度低且分布分散,易在高湍流度影响下耗散,W型孔叶片的冷却效率优势较小,甚至在高湍流度大流量比下,圆柱型孔叶片的面平均冷却效率比W型孔叶片高15%左右。  相似文献   

13.
白波  李志刚  李军 《航空动力学报》2022,37(5):1042-1053
为有效评估轴向收敛造型对端壁气膜冷却性能的影响,数值研究了不同吹风比下,轴向收敛造型对跨声速燃气涡轮叶栅端壁上游双排离散孔绝热气膜冷却效率的影响。模拟某工业燃气涡轮真实运行工况(进口湍流度为16%、出口马赫数为0.85、出口雷诺数为1.5×106),采用基于“两类热边界条件”模型的壁面传热系数和绝热冷却效率数值预测方法,比较分析了3种吹风比(1.0、2.5、3.5)下,简化平板端壁结构和轴向收敛造型端壁结构的端壁热负荷分布、绝热气膜冷却效率分布和近端壁二次流场结构,以及端壁上游气膜孔射流对叶片表面的二次冷却作用(幻影冷却)。结果表明:轴向收敛造型可以削弱马蹄涡强度,降低端壁热负荷,尤其是叶片肩部区域;轴向收敛造型可以显著增加端壁气膜覆盖范围和绝热气膜冷却效率,尤其在叶片前缘和压力面等难以冷却区域;随吹风比增加,轴向收敛造型对端壁气膜冷却特性的影响效果先增加后减小,在设计吹风比为2.5时,轴向收敛造型对端壁绝热气膜冷却效率的增强效果最显著(增加约35%);轴向收敛造型显著增加叶片前缘和压力面幻影冷却面积,尤其是叶片前缘附近面积增加约100%(设计吹风比下,冷却区域达0.1倍叶高),可有效减小叶片冷却的冷气需求流量。轴对称收敛端壁造型是进一步提高燃气涡轮叶栅端壁绝热气膜冷却效率、减小冷气流量,实现端壁高效冷却布局的有效技术途径。   相似文献   

14.
为获得高主流湍流度时全气膜涡轮叶片表面的冷却和换热特性,在跨声速风洞中实验研究了质量流量比(MFR)和主流雷诺数(Re)对叶片表面气膜冷却效率和换热系数比的影响。在叶片前缘布置了5排圆形孔,在吸力面和压力面分别布置了3排和6排圆形孔,实验结果由嵌入在叶片中截面的热电偶测得。实验中基于弦长的主流雷诺数的范围为3.0×105~9.0×105,叶栅出口马赫数Ma为0.8, MFR的范围是5.5%~12.5%,主流湍流度Tu为14.7%。实验结果表明:主流雷诺数升高显著增强了叶片表面的换热,使层流边界层到湍流边界层的转捩位置提前。对于吸力面S/C0.2的区域(S/C为当地弧长与弦长之比),气膜冷却效率受MFR影响明显,当MFR大于7.7%时提高MFR会导致气膜冷却效率降低;该区域的换热系数比在中低雷诺数时受MFR影响较小,在高雷诺数时随MFR升高而升高。压力面S/C-0.7区域的气膜冷却效率随MFR升高而升高,-0.7S/C-0.4区域的气膜冷却效率受MFR影响较小,对于整个压力面而言,MFR升高提高了叶片表面的换热系数。相对于叶片其它区域,压力面后半段区域和吸力面的气膜冷却效率受雷诺数影响较大。  相似文献   

15.
燃烧室壁面发散冷却气流影响下游涡轮静叶端壁的气热性能,论文采用数值求解三维Reynolds-Averaged Navier-Stokes(RANS)方程和SST湍流模型的方法研究了燃烧室壁面发散冷却和前缘槽缝射流作用下的涡轮静叶端壁流动结构和传热冷却特性。分析了3种发散冷却流量质量比和3种前缘槽缝射流质量流量比下的涡轮静叶端壁绝热有效度、静叶叶片泛冷却特性和叶栅流动结构。研究表明:在3种发散冷却气质量比工况下,槽缝射流质量流量比由1.0%增加至1.5%时,整体绝热冷却有效度可至少提升60%,且叶片前缘与压力面角区也得到充分冷却;发散冷却质量流量比增加会改善叶栅出口下游部分端壁冷却效果。上游发散孔流量大于下游孔且槽缝吸力面侧局部质量流量比高于滞止点附近位置,发散冷却与槽缝射流流量增加能够减小冷却气流量局部差异。发散冷却与槽缝射流流量增加会削弱马蹄涡,增强空腔涡,并对二次涡产生影响,从而改变冷却气流覆盖特性。静叶端壁气热性能的研究需要考虑上游燃烧室壁面发散冷却的影响,论文的工作为涡轮静叶端壁冷却性能分析提供了参考。  相似文献   

16.
气膜孔位置对突肩叶尖气膜冷却效率的影响   总被引:1,自引:1,他引:1       下载免费PDF全文
采用标准k-ε两方程模型求解雷诺平均Navier-Stokes方程组,研究了气膜孔位置对突肩叶尖间隙泄漏流场、气膜冷却效率和表面传热系数的影响,共模拟了3种气膜孔排布方式:中弧线气膜孔、吸力侧气膜孔、前缘气膜孔,考虑了间隙高度(t)和吹风比(M)的影响。研究结果表明:在冷气流量相同的情况下气膜孔位置对突肩叶尖气膜冷却效率影响很大,中弧线气膜冷却突肩叶尖在中弧线到压力侧突肩区域有较好的气膜覆盖;吸力侧气膜冷却突肩叶尖在中弦处的吸力侧突肩到中弧线区域和尾缘区域有较好的气膜覆盖;前缘气膜孔突肩叶尖在整个叶尖表面都有较好的气膜覆盖。间隙高度对不同突肩叶尖的影响不同。吹风比增大时前缘气膜孔突肩叶尖的气膜冷却效率增幅远大于其余两种排布方式。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号