首页 | 本学科首页   官方微博 | 高级检索  
     检索      

高湍流度时全气膜涡轮叶片表面冷却和换热特性的实验研究
引用本文:姚春意,朱惠人,刘存良,张博伦,周道恩.高湍流度时全气膜涡轮叶片表面冷却和换热特性的实验研究[J].推进技术,2020,41(6):1361-1370.
作者姓名:姚春意  朱惠人  刘存良  张博伦  周道恩
作者单位:西北工业大学 动力与能源学院,西北工业大学 动力与能源学院,西北工业大学 动力与能源学院,西北工业大学 动力与能源学院,西北工业大学 动力与能源学院
基金项目:国家自然科学基金资助项目(51776173);装备预研中国航发联合基金资助项目(6141B090213)。
摘    要:为获得高主流湍流度时全气膜涡轮叶片表面的冷却和换热特性,在跨声速风洞中实验研究了质量流量比(MFR)和主流雷诺数(Re)对叶片表面气膜冷却效率和换热系数比的影响。在叶片前缘布置了5排圆形孔,在吸力面和压力面分别布置了3排和6排圆形孔,实验结果由嵌入在叶片中截面的热电偶测得。实验中基于弦长的主流雷诺数的范围为3.0×105~9.0×105,叶栅出口马赫数Ma为0.8, MFR的范围是5.5%~12.5%,主流湍流度Tu为14.7%。实验结果表明:主流雷诺数升高显著增强了叶片表面的换热,使层流边界层到湍流边界层的转捩位置提前。对于吸力面S/C0.2的区域(S/C为当地弧长与弦长之比),气膜冷却效率受MFR影响明显,当MFR大于7.7%时提高MFR会导致气膜冷却效率降低;该区域的换热系数比在中低雷诺数时受MFR影响较小,在高雷诺数时随MFR升高而升高。压力面S/C-0.7区域的气膜冷却效率随MFR升高而升高,-0.7S/C-0.4区域的气膜冷却效率受MFR影响较小,对于整个压力面而言,MFR升高提高了叶片表面的换热系数。相对于叶片其它区域,压力面后半段区域和吸力面的气膜冷却效率受雷诺数影响较大。

关 键 词:高湍流度  跨声速  全气膜叶片  气膜冷却效率  换热系数
收稿时间:2019/7/11 0:00:00
修稿时间:2020/5/3 0:00:00

Experimental Study on Film Cooling and Heat Transfer Characteristics of a Fully-Cooled Turbine Vane at High Turbulence Intensity Condition
YAO Chun-yi,ZHU Hui-ren,LIU Cun-liang,ZHANG Bo-lun,ZHOU Dao-en.Experimental Study on Film Cooling and Heat Transfer Characteristics of a Fully-Cooled Turbine Vane at High Turbulence Intensity Condition[J].Journal of Propulsion Technology,2020,41(6):1361-1370.
Authors:YAO Chun-yi  ZHU Hui-ren  LIU Cun-liang  ZHANG Bo-lun  ZHOU Dao-en
Abstract:An experiment was performed in the transonic wind tunnel to obtain the cooling and heat transfer characteristics on the turbine vane surface at high mainstream turbulence intensity condition. The effect of mass flow ratio (MFR) and Reynolds number (Re) on the film cooling effectiveness and heat transfer coefficient was studied on a fully film-cooled vane. Five rows of cylindrical holes were arranged on the leading edge, three rows and six rows of cylindrical holes were provided on the suction side and pressure side, respectively. The temperature data measured by thermocouples embedded in the middle span of the vane were processed into film cooling effectiveness and heat transfer coefficient. In the experiment, the inlet Reynolds number based on the chord length ranged from 3.0×105 to 9.0×105, the exit Mach number of the cascade was 0.8, the mass flow ratio of the secondary flow varied from 5.5% to 12.5%, and the high turbulence intensity generated by the turbulence grid was 14.7%. Experimental results show that: the increase of the mainstream Reynolds number significantly enhances the heat transfer on the vane surface, accelerates the development of the boundary layer and leads to advanced transition position. In the region of S/C >0.2 on the suction side (S/C is the ratio of local arc length to the chord length), the film cooling effectiveness is significantly affected by MFR, increased MFR leads to lower film cooling effectiveness when MFR>7.7%. The heat transfer coefficient of the region is slightly effected by MFR at low and medium Reynolds number conditions (Re=3.0×105, Re=6.4×105), while increases with the increase of MFR at high Reynolds number condition. The film cooling effectiveness in the region of S/C<-0.7 on the pressure side increases with the increase of MFR, while is less affected by MFR for -0.7
Keywords:high turbulence intensity  transonic  fully-cooled vane  film cooling effectiveness  heat transfer coefficient
本文献已被 CNKI 等数据库收录!
点击此处可从《推进技术》浏览原始摘要信息
点击此处可从《推进技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号