首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
吹风比对旋转涡轮叶片气膜冷却的影响   总被引:4,自引:4,他引:0  
对1.5级涡轮叶片在旋转状态下不同吹风比时的气膜冷却特性进行了实验研究.实验中基于动叶弦长的涡轮进口主流雷诺数为1.6451×105,冷却工质采用二氧化碳,对应主流射流密度比为1.57,实验涡轮转速为475 r/min,对应旋转数为1.901,吹风比为0.5~2.0.采用稳态液晶方法测温.结果表明:①压力面上,随吹风比的增大,气膜冷却效率升高,气膜覆盖区域增大,气膜轨迹的偏转程度减弱;②吸力面上,随吹风比的增大,气膜冷却效率先上升后下降,气膜覆盖区域亦先增加后减少,气膜轨迹的偏转程度不明显;③射流流动的曲率半径影响气膜对壁面的附着.   相似文献   

2.
亚声速涡轮导叶前缘气膜冷却特性实验研究   总被引:3,自引:3,他引:0       下载免费PDF全文
为了获得亚声速涡轮导叶的前缘气膜冷却特性,在短周期高速风洞中对涡轮导叶前缘后倾扩张型孔气膜冷却试验件进行了实验,获得了涡轮叶片表面在不同主流雷诺数(Re=3.0×10~5~9.0×10~5)、二次流吹风比(M=0.5~2.4)和主流湍流度(Tu=1.3%,14.7%)下的气膜冷却效率和换热系数分布。实验叶片前缘有8排后倾扩张型气膜孔形成前缘喷淋冷却结构。结果表明:叶片前缘和压力面冷却效率随着吹风比的增大而升高,吸力面冷却效率随着吹风比的增大先升高后降低,最佳吹风比为0.8;在主流雷诺数(Re=3.0×10~5~9.0×105),改变雷诺数对叶片表面冷却效率的分布规律影响较小;叶片表面冷却效率随着湍流度的升高而降低,在小吹风比M=0.5下,高主流湍流度下的平均冷却效率降低50%左右,在M=2.4工况下,高湍流度下的平均冷却效率降低10%左右;叶片前缘冷气出流区域和压力面相对弧长为-0.4S/Smax-0.3的冷气重新贴附壁面区域换热系数比较高;高主流湍流度下,换热系数比较小,且吹风比变化对换热系数比的影响较小。  相似文献   

3.
旋转状态涡轮叶片吸力面单孔气膜冷却实验   总被引:4,自引:2,他引:2  
采用稳态液晶测温方法,系统研究了1.5级涡轮叶片吸力面在旋转状态下的气膜冷却特性.实验中,主流经加热压缩后冲击涡轮转动,基于动叶弦长的涡轮进口主流雷诺数为8×104.射流分别采用空气和二氧化碳,其对应射流-主流密度比分别为1.03和1.57.实验转速为630,700 r/min和737 r/min,对应旋转数分别为2.092,2.324和2.448.吹风比从0.3到3.0变化.结果表明,吸力面上,气膜冷却效率随吹风比的增大先上升后下降,存在一个最佳吹风比,使冷却效果最好;增大密度比有利于增加气膜覆盖面积;旋转降低了气膜冷却效率;气膜向低半径方向偏转,但并不十分明显.   相似文献   

4.
为探究上游尾迹影响下的涡轮动叶前缘气膜冷却特性,采用压力敏感漆技术,研究了尾迹对涡轮动叶前缘带有三排径向复合角圆柱形气膜孔的气膜冷却效率的影响,获得了不同吹风比(1.0~3.0)和尾迹斯特劳哈尔数(0,0.12,0.36)条件下前缘区域全表面气膜冷却效率分布的实验数据。结果表明:有尾迹时,随着吹风比的增加,叶片前缘大部分区域气膜冷却效率逐渐增加,仅有压力面侧气膜孔附近冷却效率逐渐降低。随着尾迹斯特劳哈尔数增加,前缘靠近压力面侧孔排下游的径向平均气膜冷却效率最大增加幅度达0.07,前缘正中间孔排附近径向平均气膜冷却效率最大降低幅度达0.13,前缘靠近吸力面侧孔排下游的径向平均气膜冷却效率最大降低幅度达0.18。整体看来,尾迹使前缘大部分区域气膜冷却效率降低。  相似文献   

5.
为研究涡轮叶片复合冷却传热特性,建立了涡轮叶片复合冷却实验测试平台,对叶片前缘区域进行了射流冲击+气膜冷却实验测试,详细研究了冷气吹风比M、前缘位置、主流雷诺数Re以及温度比Tg/Tc对冷却效率的影响规律。实验结果表明,冷却效率随吹风比的增大而增大,随Tg/Tc的增大而减小。本文实验条件下, 最佳吹风比约为1.0;越靠近前缘驻点,冷却效率越大;主流雷诺数对冷却效率的影响不大,但总体上仍表现出雷诺数越大,冷却效率越高。  相似文献   

6.
旋转状态下气膜冷却特性的数值研究   总被引:1,自引:0,他引:1  
 通过对带有气膜孔倾斜角度为30°,60°和90°圆柱形交错孔排的涡轮叶片模型进行数值模拟,得到了不同平均吹风比、雷诺数和旋转数情况下前缘面侧与后缘面侧的气膜冷却流动与换热特性及各气膜孔流量系数的分配规律。结果表明,冷气受到离心力与哥氏力的共同作用在前缘面侧向高半径处发生偏转,导致壁面冷却效率降低;雷诺数的增大会降低壁面上的气膜冷却效率,高吹风比则不利于紧贴气膜孔下游区域的冷却;各气膜孔的流量系数随着平均吹风比的增大而增大,随旋转数的提高而减小;受哥氏力作用的影响,相同工况下后缘面侧各气膜孔的流量系数明显高于前缘面侧对应气膜孔的值。  相似文献   

7.
亚声速涡轮导叶全气膜冷却特性实验研究   总被引:3,自引:2,他引:1       下载免费PDF全文
为了获得亚声速涡轮导叶的全气膜冷却特性,在短周期高速风洞中对全气膜覆盖涡轮导叶实验件进行了实验,获得了涡轮叶片表面在不同主流雷诺数(Re=3.0×10~5~9.0×10~5)、二次流质量流量比(MFR=5.5%~12.5%)和主流湍流度(Tu=1.3%,14.7%)下的气膜冷却效率分布。实验叶片前缘有5排复合角度圆柱形气膜孔形成前缘喷淋冷却结构,压力面和吸力面分别有6排和3排圆柱形气膜孔。结果表明:在本文研究的质量流量比范围内,涡轮叶片压力面和吸力面的气膜冷却效率随着质量流量比的增大而减小,而前缘区域的冷却效率随质量流量比的增大而增大;雷诺数的变化主要影响叶片压力面相对弧长S/Smax-0.6区域的冷却效率分布,在高雷诺数(Re=9.0×10~5)下,大质量流量比的冷却效率最高,而在中低雷诺数(Re=3.0×105,6.4×105)下,小质量流量比的冷却效率最高;叶片前缘气膜冷却效率受主流湍流度升高的影响较小,而在压力面和吸力面冷却效率均随着湍流度的升高而降低。  相似文献   

8.
涡轮叶片前缘气膜冷却换热实验   总被引:8,自引:1,他引:7  
针对某型涡轮叶片放大模型的前缘冷却结构气膜冷却效果开展了细致的实验研究,利用红外热像仪测量了叶片表面的温度场分布,分析了前缘的气膜孔倾角、吹风比、主流雷诺数等参数对绝热冷却效率和压力损失的影响.实验中前缘的3排气膜孔倾角变化范围是35°~90°,主流雷诺数变化范围是76112~142624,吹风比变化范围是0.44~2.64.结果表明:气膜孔倾角越小,前缘驻点附近的气膜覆盖效果越好;气膜孔倾角为45°的叶片压力损失系数最小,气膜孔倾角为75°的叶片压力损失系数最大;主流雷诺数增大,绝热冷却效率下降,压力损失系数增加;吹风比增大到1.32时,绝热冷却效率达到最大,吹风比再增大绝热冷却效率反而下降.   相似文献   

9.
为探究高速条件下涡轮叶片吸力面上复合角孔的气膜冷却特性,在高速风洞中实验测量了吸力面复合角孔的气膜冷却效率与传热系数比,并通过净热通量减少(NHFR)衡量了复合角孔对吸力面的气膜冷却净收益。分析了雷诺数、吹风比以及湍流度对气膜冷却效率、传热系数比及净热通量减少的影响规律,结果表明:低雷诺数下气膜冷却效率受雷诺数影响较大,但当雷诺数增大至6.4×105以上时,气膜冷却效率几乎不再变化;随湍流度的增大,气膜冷却效率整体降低,低吹风比下气膜冷效对雷诺数、湍流度较为敏感。传热系数比随气膜吹风比增加而增大,但在湍流度较大时,气膜冷却对传热系数的影响降低。湍流度的增大使NHFR有所升高。研究表明对高的湍流度工况,吹风比为0.8时复合角孔呈现最佳的气膜冷却性能。  相似文献   

10.
叶片前缘气膜冷却效率的实验研究   总被引:7,自引:1,他引:6  
朱惠人  许都纯  郭涛  刘松龄 《航空动力学报》1999,14(2):205-208,223-224
采用放大的半圆柱状表面模拟涡轮叶片前缘的形状,对叶片前缘多排圆柱形孔的气膜冷却效率进行了实验研究。测出了孔排区及其下游的局部冷却效率。研究了主流雷诺数及平均吹风比对冷却效率及二次流(冷气)出流轨迹的影响。实验参数范围是:主流雷诺数Re=42000~127000,平均吹风比M=0.8~2.0,测量分8个工况进行。   相似文献   

11.
旋转状态下气膜冷却效果的数值研究   总被引:1,自引:0,他引:1  
为探讨旋转状态下气膜冷却的效果,在不同吹风比和旋转数下,对带有气膜冷却的涡轮叶片进行三维数值模拟,研究了旋转效应对叶片表面冷却效率的影响。结果表明,当叶片旋转时,压力面上的冷却效率增大,吸力面上的冷却效率降低。叶片表面气膜冷却效果随着旋转数的增加而下降。旋转效应对叶片表面冷却效果的影响程度依赖于吹风比。当吹风比增大时,气膜冷却效果随着旋转数的增加而下降的趋势增大。  相似文献   

12.
航空发动机性能的提高对涡轮叶片耐热极限提出了更高的要求,为了更准确地分析涡轮叶片的传热特性,选取某型气冷涡轮动叶10%、50%和90%叶高的特征型面通过低导热光敏树脂材料经过3D打印而成,通过叶片表面粘贴厚度为0.02mm康铜加热膜接通恒定电流加热,使用红外热像系统精确测量叶片壁面温度,在平面叶栅中研究了吹风比(M)和雷诺数(Re)对气膜绝热冷却效率和努塞尔数(Nu)的影响(试验中基于弦长的进口雷诺数Re为8.0×104-16.7×104,吹风比M为1-3)。试验结果表明:M=1时气膜能够较好附着在叶片表面,叶片表面得到较好冷却;随着主流雷诺数的增加,绝热壁面温度逐渐升高,绝热效率逐渐降低;吹风比对涡轮叶片的传热特性的影响与气膜孔出流角度有关,随着吹风比的增大,压力面绝热冷却效率逐渐增大,由于吸力面的气膜孔出流角较大,吹风比增大使得吸力面的绝热冷却效率逐渐减小;随着吹风比的增加,对流换热系数增大。  相似文献   

13.
涡轮叶片吸力面气膜冷却效率的数值研究   总被引:5,自引:2,他引:3  
姚玉  张靖周  何飞  郭文 《航空动力学报》2010,25(6):1245-1250
针对某型导向叶片,运用RNG(renormalization group)湍流模型对涡轮叶栅通道内部的三维流场和叶片吸力面的冷却效率进行了数值模拟.分析在叶栅通道主流入口雷诺数Re=4×105~6×105和冷气吹风比M=0.5~3范围内,沿吸力面不同弦向位置处开设气膜孔对气膜冷却效率的影响.结果表明:各位置气膜孔单独喷射时叶片吸力面的冷却效率均随着入口雷诺数的增加而增大;在气膜孔出口下游附近,冷却效率随着吹风比的增加先升高后降低,在下游远处则一直随着吹风比的增加而增大;三个位置处气膜孔单独喷射时,位置1气膜孔的冷却效率较位置2和位置3的高.   相似文献   

14.
涡轮叶片表面气膜冷却的传热实验研究   总被引:4,自引:3,他引:4  
对压力面和吸力面各有双排气膜孔冷却的涡轮导向叶片表面进行了详细的传热实验研究,在不同吹风比下获得了当地气膜冷却效率和换热系数,结合流场测量结果分析了叶片表面冷却和换热规律。结果表明不同孔排位置叶片表面气膜冷却效率和换热规律有很大不同,孔排位置一定时,冷却效果主要由吹风比决定。结果还表明尽管冷气喷射使型面换热系数随吹风比的增大而显著增大,气膜冷却还是能有效的降低型面的热负荷,其中以中吹风比喷射时冷却效果最为显著。  相似文献   

15.
采用基于窄带热色液晶测量的瞬态全表面传热测量技术,研究了不同主流湍流度下的吹风比对涡轮导向叶片气膜冷却的影响,获得了叶片吸力面侧圆柱形孔排气膜冷却效率和表面传热系数比的全表面分布数据。结果表明:由于气膜射流与主流掺混的相互作用会随着主流湍流度的变化而变化,因此在主流湍流度不同时,吹风比对气膜冷却效率和表面传热系数比的影响规律会有所不同;主流湍流度较小时,吹风比的增大会显著减弱气膜覆盖效果与气膜冷却效率,但是在大湍流度下,吹风比的影响较弱,尤其是在远下游区域;相同的主流湍流度条件下,吹风比的增大会使得表面传热系数提高,但是在大湍流度下,换热增强效果较弱;相同吹风比下,高湍流度下的表面传热系数比相对较小。   相似文献   

16.
旋转状态下气膜冷却换热系数的实验   总被引:1,自引:0,他引:1       下载免费PDF全文
采用平板叶片模型,测量了静止和旋转状态气膜冷却换热系数(hg)的分布规律,重点研究旋转对气膜冷却换热系数的影响。测试表面气膜孔直径D=4 mm,流向倾角α=30°,展向倾角φ=90°。实验转速ω=0,800 r/min,主流雷诺数ReD=3 191,吹风比M=0.4~2.0,密度比DR=1.02。采用宽幅低温液晶测量叶片表面的温度场。结果表明,旋转使得气膜在展向上发生较明显的偏转,且吸力面上气膜偏转程度要大于压力面;吹风比对换热系数的影响较大,且这种影响在静止与旋转状态差别很大。  相似文献   

17.
涡轮叶片吸力面上收敛缝形孔气膜冷却效率的数值研究   总被引:7,自引:0,他引:7  
姚玉  张靖周  何飞  郭文 《航空学报》2010,31(6):1115-1120
运用RNG湍流模型对叶片吸力面开设收敛缝形孔的冷却特性进行了数值模拟,分析在叶栅通道主流入口雷诺数Re=4×105~6×105和二次流吹风比M=0.5~3.0范围内,沿吸力面3个典型弦向位置处(分别对应叶栅通道喉部上游、喉部和喉部下游)开设收敛缝形孔对气膜冷却效果的影响。计算结果表明:各位置处收敛缝形孔吸力面的冷却效率随着吹风比和主流入口雷诺数的增大而逐渐升高;与圆形孔相比,各位置处收敛缝形孔沿流向的冷却效率均得到有效改善,且在展向上的分布较均匀;在相同的主流入口雷诺数和二次流吹风比下,位于喉部上游位置的收敛缝形孔冷却效率大都高于其他位置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号