首页 | 本学科首页   官方微博 | 高级检索  
     检索      

涡轮动叶表面换热特性的试验研究
引用本文:宣文韬,钟博,魏景涛,顾豪,郭昊雁,杨卫华.涡轮动叶表面换热特性的试验研究[J].推进技术,2022,43(7):253-260.
作者姓名:宣文韬  钟博  魏景涛  顾豪  郭昊雁  杨卫华
作者单位:南京航空航天大学 能源与动力学院,南京航空航天大学 能源与动力学院,南京航空航天大学 能源与动力学院,南京航空航天大学 能源与动力学院,北京动力机械研究所,南京航空航天大学 能源与动力学院
摘    要:航空发动机性能的提高对涡轮叶片耐热极限提出了更高的要求,为了更准确地分析涡轮叶片的传热特性,选取某型气冷涡轮动叶10%、50%和90%叶高的特征型面通过低导热光敏树脂材料经过3D打印而成,通过叶片表面粘贴厚度为0.02mm康铜加热膜接通恒定电流加热,使用红外热像系统精确测量叶片壁面温度,在平面叶栅中研究了吹风比(M)和雷诺数(Re)对气膜绝热冷却效率和努塞尔数(Nu)的影响(试验中基于弦长的进口雷诺数Re为8.0×104-16.7×104,吹风比M为1-3)。试验结果表明:M=1时气膜能够较好附着在叶片表面,叶片表面得到较好冷却;随着主流雷诺数的增加,绝热壁面温度逐渐升高,绝热效率逐渐降低;吹风比对涡轮叶片的传热特性的影响与气膜孔出流角度有关,随着吹风比的增大,压力面绝热冷却效率逐渐增大,由于吸力面的气膜孔出流角较大,吹风比增大使得吸力面的绝热冷却效率逐渐减小;随着吹风比的增加,对流换热系数增大。

关 键 词:气膜冷却  涡轮动叶  绝热冷却效率  对流换热系数  叶片高效冷却
收稿时间:2020/10/21 0:00:00
修稿时间:2020/11/18 0:00:00

Experimental Research on Heat Transfer Characteristics of Turbine Blade Surface
XUAN Wen-tao,ZHONG Bo,WEI Jing-tao,GU Hao,GUO Hao-yan,YANG Wei-hua.Experimental Research on Heat Transfer Characteristics of Turbine Blade Surface[J].Journal of Propulsion Technology,2022,43(7):253-260.
Authors:XUAN Wen-tao  ZHONG Bo  WEI Jing-tao  GU Hao  GUO Hao-yan  YANG Wei-hua
Institution:College of Energy and Power,Nanjing University of Aeronautics and Astronautics,,,,,College of Energy and Power,Nanjing University of Aeronautics and Astronautics
Abstract:The improvement of aero-engine performance puts higher requirements on the heat resistance limit of turbine blades. In order to analyze the heat transfer characteristics of turbine blades more accurately, a certain type of air-cooled turbine blades with 10%, 50%, and 90% blade heights are selected to be 3D printed with low thermal conductivity photosensitive resin materials. The constant current heating film is pasted on the surface of the blade with a constantan heating film with a thickness of 0.02mm. The infrared thermal imaging system is used to accurately measure the temperature of the blade wall. The effects of blowing ratio (M) and Reynolds number (Re) on the efficiency of film adiabatic cooling and Nusselt number (Nu) are studied (in the test, the imported Reynolds number based on chord length is 80000-167000, and the blowing ratio M is 1-3). The test results show that: (1) When M=1, the air film can better adhere to the surface of the blade, and the surface of the blade is better cooled. Affected by the horseshoe vortex and corner vortex, the cooling airflow converges towards the middle. (2) With the increase of the mainstream Reynolds number, the entrainment effect of the mainstream on the air film is strengthened, the temperature of the insulating wall of different profiles gradually increases, and the insulation efficiency gradually decreases. The increase of the outflow velocity of the main flow and air film causes the Nusselt number of the blade surface to gradually increase. (3) The effect of the blowing ratio on the heat transfer characteristics of the turbine blades is related to the outlet angle of the air film holes. With the increase of the blowing ratio, the adiabatic cooling efficiency of the pressure surface gradually increases. While the outlet angle of the film holes on the suction surface is larger than the outlet angle of the film holes on the pressure surface, the increase of the blowing ratio makes it difficult for the cooling air film to adhere to the blade surface, and the adiabatic cooling efficiency of the suction surface gradually decreases. (4) With the increase of the blowing ratio, the flow momentum of the cold air jet increases,the speed increases, the damage to the boundary layer near the wall is intensified, and the convective heat transfer coefficient increases.
Keywords:Air film cooling  Turbine rotor blades  Adiabatic cooling efficiency  Convective heat transfer coefficient  Efficient blade cooling
点击此处可从《推进技术》浏览原始摘要信息
点击此处可从《推进技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号