首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
为防止纳米铝粉在空气中进一步氧化失活,在氮气气氛下,利用硅烷偶联剂对纳米铝粉预处理,后用聚叠氮缩水甘油醚(GAP)对其进行表面包覆改性,得到纳米Al/GAP复合粒子(n-Al/GAP)。采用扫描电镜(SEM)、透射电镜(TEM)、能谱分析仪(EDS)、X射线衍射仪(XRD)、傅里叶变换红外(FTIR)光谱及X射线光电子能谱(XPS)对其形貌和结构进行了表征。用差示扫描量热仪(DSC)对ADN(二硝酰胺铵)、n-Al/ADN和(n-Al/GAP)/ADN的热分解反应特性进行了研究。结果表明:偶联剂在GAP与纳米铝粉之间起到了桥梁的作用,GAP包覆纳米铝粉形成核壳结构复合粒子;nAl和n-Al/GAP对ADN液化温度几乎没有影响,但使其分解温度均明显提高,且n-Al/GAP影响更为显著。  相似文献   

2.
AP/RDX共晶包覆微米铝粉的制备及表征   总被引:1,自引:1,他引:0       下载免费PDF全文
曹宸  解立峰  李斌 《推进技术》2020,41(12):2868-2873
为了改善传统含高氯酸铵(AP)固体推进剂的热效应,采用溶剂蒸发法,参照零氧平衡的比例对高氯酸铵、黑索金(RDX)和微米级铝粉进行包覆处理,制备出微球形的AP/RDX/Al核壳型复合粒子,并对包覆后的AP/RDX/Al复合粒子进行TEM、FTIR、XRD和XPS表征分析,分析表明AP和RDX形成了AP/RDX共晶包覆层包覆在微米铝粉的表面。进一步对包覆后的复合粒子进行DSC测试分析,分析表明微米铝粉会使AP的放热更集中;经AP/RDX共晶包覆的微米铝粉颗粒热效应显著提高。  相似文献   

3.
核壳结构纳米铝粉热学行为   总被引:4,自引:4,他引:0  
为了研究不同表面包覆物对纳米铝粉热学行为的影响,采用激光-感应复合加热法制备了三种不同表面包覆的核/壳结构纳米铝粉(氧化铝钝化、碳包覆及增塑剂DOS包覆)。采用高分辨透射电镜(HRTEM)对制备的纳米粉末结构进行表征,并采用差示扫描量热及热重分析(DSC-TG)对不同物质包覆纳米铝粉的热学性能进行研究。结果表明,这些纳米粒子均呈现出明显的核壳结构,且包覆层厚度约3.5nm。这三种不同表面包覆纳米铝粉在400℃至铝熔点(660℃)之间均发生了氧化,但非氧化物包覆纳米铝粉(碳包覆与增塑剂DOS包覆)的氧化开始温度及峰温比氧化铝钝化纳米铝粉提前了约30℃左右,而且氧化放热热焓和氧化质量增重均高于氧化铝钝化纳米铝粉,表明这两种非氧化物表面包覆对纳米铝粉的热学行为有积极的影响。最后对不同物质包覆纳米铝粉的破壳氧化机制进行了探讨。  相似文献   

4.
激光-感应复合加热法制备碳包覆纳米铝粉   总被引:1,自引:2,他引:1       下载免费PDF全文
为了探索固体火箭推进剂的新型燃烧剂,采用激光-感应复合加热法在CH4气和Ar气的气氛下制备了碳包覆铝纳米粒子。对这种纳米粒子进行了X射线衍射(XRD)、透射电子显微镜(TEM)和高分辨透射电镜(HRTEM)的物相、形貌和结构分析,结果表明,该纳米粒子具有明显的核壳结构。差热分析(DTA)表明了碳包覆纳米铝粉在氧气氛中540℃左右剧烈氧化。简要讨论了碳包覆铝纳米颗粒的形成过程,即碳原子没有溶解在纳米铝颗粒内部,而是在铝颗粒的表面成核长大。  相似文献   

5.
针对航空维修中零件磨损、腐蚀等故障,采用超细铝粉包覆镍芯核制备铝包镍复合粉末,利用等离子喷涂工艺在不锈钢基体上制备涂层,通过扫描电子显微镜和能谱仪等方法分析、观察涂层的组织及结构,测试涂层的结合强度和显微硬度。结果表明涂层可应用于零件尺寸修复。  相似文献   

6.
纳米Fe2O3的制备及其对AP热分解的催化作用   总被引:2,自引:3,他引:2       下载免费PDF全文
采用溶胶-凝胶法、水热法及强迫水解法,制备了球形、立方形、纺缍形及针形四种不同形貌的纳米Fe2O3粒子.通过透射电子显微镜(TEM)、X衍射(XRD)、比表面积(BET)对纳米粒子的粒径、形貌、结构、比表面积进行了表征,用差示扫描量热仪(DSC)研究了Fe2O3对高氯酸铵(AP)热分解的催化性能.结果表明纳米Fe2O3对AP的高温热分解催化作用较微米的效果好.不同形貌的纳米Fe2O3粒子有着各自不同的比表面积,比表面积较大的纳米纺缍形和针形Fe2O3较比表面积较小的纳米立方形和球形的催化效果好.比表面积最大的纳米针形Fe2O3使AP的高温热分解峰温度降低了67.3℃,表观分解放热提高了785J·g-1,表现出较好的催化性能.  相似文献   

7.
以碳纳米管(CNTs)为载体,采用化学沉淀法制备了不同摩尔比的NiO/CNTs复合粒子,采用透射电子显微镜、X-ray衍射仪、扫描电子显微镜、X射线能谱、比表面积分析仪等表征手段对产物的结构进行了表征,并用差示扫描量热仪研究了NiO/CNTs复合粒子对AP及AP/HTPB推进剂热分解的催化作用。结果表明:NiO/CNTs复合粒子结晶好、包覆均匀、比表面积大。NiO/CNTs(nNiO:nCNTs=1:4)复合粒子可使AP和AP/HTPB推进剂的高温分解峰温分别降低了92.24℃和42.2℃,使总表观分解热分别增加了1 086 J/g和730 J/g,表现出显著的催化性能,其催化性能明显优于纯纳米NiO和纯CNTs。碳纳米管的独特结构和载体支撑作用是NiO/CNTs复合粒子的催化性能强于纳米NiO的主要原因。  相似文献   

8.
碳/碳复合材料表面纳米HAp/壳聚糖生物复合涂层的制备   总被引:3,自引:0,他引:3  
以声化学法合成的纳米羟基磷灰石(HAp)为起始原料,以异丙醇作为分散介质,采用水热电泳沉积法在经壳聚糖(CS)溶液改性后的碳/碳复合材料(C/C)表面沉积纳米HAp/CS生物复合涂层.重点研究了水热条件下沉积电压对复合涂层的晶相组成、形貌和结构的影响规律.采用X-射线衍射仪(XRD)、透射电子显微镜(TEM)、傅立叶变换红外光谱分析仪(FTIR)和场发射扫描电子显微镜(FE-SEM)对所制备的涂层进行表征.结果表明:随着沉积电压的升高,涂层更加致密和均匀;同时水热环境有利于纳米HAp晶粒的生长,制备出的HAp/CS复合涂层不需要后续热处理.  相似文献   

9.
刘环环  姜炜  郝嘎子 《推进技术》2015,36(8):1257-1261
以石墨烯为载体,采用两步法制备了CuCr2O4/石墨烯复合粒子,通过X射线衍射仪(XRD)、透射电子显微镜(TEM)对样品的结构及形貌进行了表征,并采用差示扫描量热仪(DSC)分别研究了CuCr2O4、CuCr2O4/石墨烯、石墨烯及CuCr2O4和石墨烯的混合物对AP的催化效果。结果表明,CuCr2O4纳米粒子较均匀地分布在石墨烯上,CuCr2O4/石墨烯复合粒子使AP高温分解峰温度降至382℃,降低了60℃,表观分解热增加了351J/g,达1188J/g,其催化效果明显优于CuCr2O4、石墨烯及CuCr2O4和石墨烯的混合物。  相似文献   

10.
用硫化铵制备纳米二硫化钼固体润滑剂微粒   总被引:1,自引:0,他引:1  
以钼酸铵和硫化铵为原料,通过化学沉淀法制备了前驱体三硫化钼.再经过氢气份脱硫制备了纳米二硫化钼固体润滑剂微粒.利用透射电子显微镜(TEM)、激光粒度分析仪和X射线衍射(XRD)对粉体粒子形貌、大小和相结构进行了分析.结果表明:制备纳米二硫化钼微粒的条件为pH值为6.0.煅烧温度为500℃,保温时间为30min,所得微粒粒径为20~40 nm左右的球形颗粒.  相似文献   

11.
以 Al2 O3微粒为分散相,进行了周期换向脉冲复合电沉积工艺研究,快速电沉积出了 Al2 O3/Ni 复合镀层。利用扫描电镜及能谱分析技术对 Al2 O3/Ni 复合镀层的微观形貌及组成进行了表征,考察了脉冲参数对复合镀层中Al2 O3含量及镀层微观形貌的影响;并就周期换向脉冲电沉积与直流电沉积复合镀层的微观形貌、镀层应力及沉积速率进行比较。结果表明:采用周期换向脉冲法快速电沉积可以得到组织致密、内应力小、沉积速率高的 Al2 O3/Ni复合镀层。  相似文献   

12.
A new process of synthesizing TiNi/Ti2Ni composite particles, high temperature molten salts method, is introduced. This method uses molten salts as a reaction medium that does not take part in the chemical reaction and can be easily dissolved in rinsing water. Ac-cording this method, the composite particles were prepared in molten salts at 700 ℃-900 ℃. By means of differential scanning calo-rimetry (DSC), the reversible martensitic transformation of TiNi particles in these composite particles was confirmed.  相似文献   

13.
采用电化学方法电沉积制得不同形貌及粒径的纳米锑颗粒,并在制备过程中使用OP-10对纳米锑颗粒表面进行了原位改性.通过TEM、XRD、FTIR等方法对纳米锑颗粒的形态、物相和包覆效果进行表征.结果显示,纳米锑颗粒的制备具有时间效应和电流效应.随着反应时间的加长,纳米锑颗粒粒径变大,且在某种程度上存在着团聚现象;电流密度在一定范围内,适当增大电流密度有利于纳米锑颗粒的形成.纳米锑颗粒的表面改性,主要是通过OP-10的长链分子结构与纳米锑颗粒之间的化学吸附以及OP-10的长链烷基分子之间的氢键、范德华力相互作用,分子链相互缠结,部分通过C-H键互相渗入,最终有效地包覆在纳米锑颗粒表面来达到其表面改性效果,同时在反应过程中醚键也起了一定作用.纳米锑颗粒在纯液体石蜡油中的分散稳定性能与其添加量有关,其最佳添加量为0.5%.  相似文献   

14.
化学镀SiC/Ni-P功能梯度材料工艺、组织及性能   总被引:3,自引:0,他引:3  
通过对化学镀Ni- P- SiC复合镀层的研究,找到了制备SiC/Ni- P 功能梯度材料(FGM) 的工艺方法。并采用光学显微镜、电子探针分析仪及热震试验等方法和手段对功能梯度材料的组织、形貌、成分与镀层结合力进行了研究。结果表明,功能梯度材料中SiC微粒以弥散状态沿镀层厚度方向呈梯度分布,无团聚结块现象,材料致密,组织细小。功能梯度材料较单层Ni- P- SiC复合镀层以及Ni- P/Ni- P- SiC 双层镀层具有更好的结合强度。  相似文献   

15.
以铝粉、NH4F为原料,Nb为添加剂,在N2压力小于0.5 MPa条件下,用高温SHS成功地合成了AlN粉体。研究了添加剂和N2压力对燃烧合成的影响,运用TG/DSC考察了粉末原料的氮化过程,采用XRD、SEM对粉体的物相、显微形貌进行观察表征。研究结果表明,当Al/NH4F=4,在添加剂Nb的作用下,合成的AlN粉体颗粒分布均匀、氧含量低且具有良好结晶形态;在反应前、中期,合适N2压力有助于提高粉体的转化率。  相似文献   

16.
Al/高氯酸铵复合粒子的制备及其性能表征   总被引:8,自引:1,他引:8       下载免费PDF全文
用溶剂-非溶剂法制备了Al/高氯酸铵(AP)复合粒子,并用TEM,SEM,XRD和ICP对其进行了表征。首先对复合粒子的热分析进行了DTA测定,并用相同比例的简单混合物来作对比;然后选用三组推进剂样品进行DTA测定,在每组样品中分别选用添加有Al/AP复合粒子和纯Al粉来作对比。结果表明,将Al粉与AP进行复合处理后,Al粉对AP的热分解有了一定的催化作用,而相同比例的Al粉和AP简单混合物中,Al粉对AP的热分解无明显催化作用;与加有纯Al粉的推进剂样品相比较,添加有Al/AP复合粒子的推进剂样品高温分解峰温降低,总放热量大大提高。这表明Al粉与AP的复合处理能显著提高AP与推进剂的热分解性能。  相似文献   

17.
纳米CaCO3/SiO2核-壳结构复合粒子的制备   总被引:8,自引:0,他引:8       下载免费PDF全文
采用含有纳米碳酸钙的硅酸钠水性悬浮液在酸性物质作用下,硅酸盐发生水解-缩合反应生成溶胶从而沉积在纳米碳酸钙粒子表面的溶胶沉淀法,制备出具有核-壳结构的纳米碳酸钙/二氧化硅复合粒子。用TEM、IR、xPs、TGA、xRD等方法对复合粒子的大小、形貌、化学组成、结构、热性能及晶型等作了分析和表征。  相似文献   

18.
徐飞  潘蕾  白云瑞  曹佳梦  陶杰  陶海军  蔡雷 《航空学报》2014,35(6):1724-1732
为了改善TA2/Cf/PEEK纤维金属混杂层板中TA2/PEEK的界面粘结性能,利用NaTESi恒压阳极氧化法对TA2板进行表面改性。首先通过正交试验对阳极氧化工艺进行优化,对不同处理工艺的TA2板表面进行了XRD、SEM分析以及粗糙度的表征;其次,研究了钛板表面改性对TA2/PEEK界面结合强度及断裂韧性的影响。结合扫描电镜图进行表面粗糙度及剪切强度的极差分析,发现随着阳极氧化时间的增长,表面粗糙度减小,TA2/PEEK接头的单搭剪切强度下降。对不同工艺下单搭接头的拉伸剪切强度进行比较后,确定了利于提高TA2/PEEK界面结合强度的最优工艺为恒压10 V、在35℃下阳极氧化10 min;该种工艺处理后的钛板表面粗糙度为1.34 μm,其表面形貌为纳米颗粒,粒径尺寸为100~200 nm,在阳极氧化时间为10 min、电压为10 V时,其表面纳米颗粒分布最为均匀,该种形貌下制备的TA2/PEEK界面剪切强度达到19 MPa,失效模式为混合破坏;通过载荷-位移曲线、R曲线,对此工艺下TA2/PEEK界面I型层间断裂韧性进行了表征,发现其平均能量释放率为188.1 J/m2,相比于未经表面处理的试样增加了103.1%,阳极氧化工艺处理后的TA2/PEEK界面抗分层能力更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号