首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ARTEMIS Mission Design   总被引:2,自引:0,他引:2  
The ARTEMIS mission takes two of the five THEMIS spacecraft beyond their prime mission objectives and reuses them to study the Moon and the lunar space environment. Although the spacecraft and fuel resources were tailored to space observations from Earth orbit, sufficient fuel margins, spacecraft capability, and operational flexibility were present that with a circuitous, ballistic, constrained-thrust trajectory, new scientific information could be gleaned from the instruments near the Moon and in lunar orbit. We discuss the challenges of ARTEMIS trajectory design and describe its current implementation to address both heliophysics and planetary science objectives. In particular, we explain the challenges imposed by the constraints of the orbiting hardware and describe the trajectory solutions found in prolonged ballistic flight paths that include multiple lunar approaches, lunar flybys, low-energy trajectory segments, lunar Lissajous orbits, and low-lunar-periapse orbits. We conclude with a discussion of the risks that we took to enable the development and implementation of ARTEMIS.  相似文献   

2.
The LISA Pathfinder Mission   总被引:1,自引:0,他引:1  
LISA Pathfinder, formerly known as SMART-2, is the second of the European Space Agency’s Small Missions for Advance Research and Technology, and is designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission, by testing the core assumption of gravitational wave detection and general relativity: that free particles follow geodesics. The new technologies to be demonstrated in a space environment include: inertial sensors, high precision laser interferometry to free floating mirrors, and micro-Newton proportional thrusters. LISA Pathfinder will be launched on a dedicated launch vehicle in late 2011 into a low Earth orbit. By a transfer trajectory, the sciencecraft will enter its final orbit around the first Sun-Earth Lagrange point. First science results are expected approximately 3 months thereafter. Here, we give an overview of the mission including the technologies being demonstrated.  相似文献   

3.
The French space mission MICROSCOPE aims at testing the Equivalence Principle (EP) up to an accuracy of 10?15. The experiment will be carried out on a satellite which is developed and produced within the CNES Myriade series. The measuring accuracy will be achieved by means of two high-precision capacitive differential accelerometers that are built by the French institute ONERA, see Touboul and Rodrigues (Class. Quantum Gravity 18:2487–2498, 2001). At ZARM, which is a member of the science team, the data evaluation process is prepared. Therefore, a comprehensive simulation of the real system including the science signal and all error sources is built for the development and testing of data reduction and data analysis algorithms to extract the EP violation signal. Currently, the ZARM Drag-Free simulator, a tool to support mission modelling, is adapted for the MICROSCOPE mission in order to simulate test mass and satellite dynamics. Models of environmental disturbances like solar radiation pressure are considered, also. Additionally, detailed modelling of the on-board capacitive sensors is done. The actual status of the mission modelling will be presented. Particularly, the modelling of disturbances forces will be discussed in detail.  相似文献   

4.
Launch and Early Operation of the MESSENGER Mission   总被引:1,自引:0,他引:1  
On August 3, 2004, at 2:15 a.m. EST, the MESSENGER mission to Mercury began with liftoff of the Delta II 7925H launch vehicle and 1,107-kg spacecraft including seven instruments. MESSENGER is the seventh in the series of NASA Discovery missions, the third to be built and operated by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) following the Near Earth Asteroid Rendezvous (NEAR) Shoemaker and Comet Nucleus Tour (CONTOUR) missions. The MESSENGER team at JHU/APL is using efficient operations approaches developed in support of the low-cost NEAR and CONTOUR operations while incorporating improved approaches for reducing total mission risk. This paper provides an overview of the designs and operational practices implemented to conduct the MESSENGER mission safely and effectively. These practices include proven approaches used on past JHU/APL operations and new improvements implemented to reduce risk, including adherence to time-proven standards of conduct in the planning and implementation of the mission. This paper also discusses the unique challenges of operating in orbit around Mercury, the closest planet to the Sun, and what specific measures are being taken to address those challenges.  相似文献   

5.
To fly close to the Sun (to a perihelion of 4 solar radii) represents many unique challenges to a mission and spacecraft design. The solar probe design is a result of over two decades of studies that have allowed the evolution of both the mission and trajectory design, as well as the spacecraft configurations. During these studies some of the most significant design challenges have been the trajectory design, the spacecraft shield design, the spacecraft configuration, the telecommunications near perihelion, science instrument accommodations, and minimizing mission cost. This latter challenge (minimum cost) permeates all other design issues suggesting specific solutions consistent with this constraint. This presents the evolution and rationale that have taken place to arrive at the current design for this challenging mission.  相似文献   

6.
THEMIS, NASA’s fifth Medium Class Explorer (MIDEX) mission will monitor the onset and macro-scale evolution of magnetospheric substorms. It is a fleet of 5 small satellites (probes) measuring in situ the magnetospheric particles and fields while a network of 20 ground based observatories (GBOs) monitor auroral brightening over Northern America. Three inner probes (~1 day period, 10 RE apogee) monitor current disruption and two outer probes (~2 day and ~4 day period, 20 RE and 30 RE apogees respectively) monitor lobe flux dissipation. In order to time and localize substorm onsets, THEMIS utilizes Sun–Earth aligned conjunctions between the probes when the ground-based observatories are on the nightside. To maintain high recurrence of conjunctions the outer orbits have to be actively adjusted during each observation season. Orbit maintenance is required to rearrange the inner probes for dayside observations and also inject the probes into their science orbits after near-simultaneous release from a common launch vehicle. We present an overview of the orbit strategy, which is primarily driven by the scientific goals of the mission but also represents a compromise between the probe thermal constraints and fuel capabilities. We outline the process of orbit design, describe the mission profile and explain how mission requirements are targeted and evaluated. Mission-specific tools, based on high-fidelity orbit prediction and common magnetospheric models, are also presented. The planning results have been verified by in-flight data from launch through the end of the first primary science seasons and have been used for mission adjustments subject to the early scientific results from the coast phase and first tail season.  相似文献   

7.
New Horizons Mission Design   总被引:1,自引:0,他引:1  
In the first mission to Pluto, the New Horizons spacecraft was launched on January 19, 2006, and flew by Jupiter on February 28, 2007, gaining a significant speed boost from Jupiter’s gravity assist. After a 9.5-year journey, the spacecraft will encounter Pluto on July 14, 2015, followed by an extended mission to the Kuiper Belt objects for the first time. The mission design for New Horizons went through more than five years of numerous revisions and updates, as various mission scenarios regarding routes to Pluto and launch opportunities were investigated in order to meet the New Horizons mission’s objectives, requirements, and goals. Great efforts have been made to optimize the mission design under various constraints in each of the key aspects, including launch window, interplanetary trajectory, Jupiter gravity-assist flyby, Pluto–Charon encounter with science measurement requirements, and extended mission to the Kuiper Belt and beyond. Favorable encounter geometry, flyby trajectory, and arrival time for the Pluto–Charon encounter were found in the baseline design to enable all of the desired science measurements for the mission. The New Horizons mission trajectory was designed as a ballistic flight from Earth to Pluto, and all energy and the associated orbit state required for arriving at Pluto at the desired time and encounter geometry were computed and specified in the launch targets. The spacecraft’s flight thus far has been extremely efficient, with the actual trajectory error correction ΔV being much less than the budgeted amount.  相似文献   

8.
Nearly three decades after the Mariner 10 spacecraft’s third and final targeted Mercury flyby, the 3 August 2004 launch of the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft began a new phase of exploration of the closest planet to our Sun. In order to ensure that the spacecraft had sufficient time for pre-launch testing, the NASA Discovery Program mission to orbit Mercury experienced launch delays that required utilization of the most complex of three possible mission profiles in 2004. During the 7.6-year mission, the spacecraft’s trajectory will include six planetary flybys (including three of Mercury between January 2008 and September 2009), dozens of trajectory-correction maneuvers (TCMs), and a year in orbit around Mercury. Members of the mission design and navigation teams optimize the spacecraft’s trajectory, specify TCM requirements, and predict and reconstruct the spacecraft’s orbit. These primary mission design and navigation responsibilities are closely coordinated with spacecraft design limitations, operational constraints, availability of ground-based tracking stations, and science objectives. A few days after the spacecraft enters Mercury orbit in mid-March 2011, the orbit will have an 80° inclination relative to Mercury’s equator, a 200-km minimum altitude over 60°N latitude, and a 12-hour period. In order to accommodate science goals that require long durations during Mercury orbit without trajectory adjustments, pairs of orbit-correction maneuvers are scheduled every 88 days (once per Mercury year).  相似文献   

9.
The ARTEMIS Mission   总被引:2,自引:0,他引:2  
The Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon??s Interaction with the Sun (ARTEMIS) mission is a spin-off from NASA??s Medium-class Explorer (MIDEX) mission THEMIS, a five identical micro-satellite (hereafter termed ??probe??) constellation in high altitude Earth-orbit since 17 February 2007. By repositioning two of the five THEMIS probes (P1 and P2) in coordinated, lunar equatorial orbits, at distances of ??55?C65 R E geocentric (??1.1?C12 R L selenocentric), ARTEMIS will perform the first systematic, two-point observations of the distant magnetotail, the solar wind, and the lunar space and planetary environment. The primary heliophysics science objectives of the mission are to study from such unprecedented vantage points and inter-probe separations how particles are accelerated at reconnection sites and shocks, and how turbulence develops and evolves in Earth??s magnetotail and in the solar wind. Additionally, the mission will determine the structure, formation, refilling, and downstream evolution of the lunar wake and explore particle acceleration processes within it. ARTEMIS??s orbits and instrumentation will also address key lunar planetary science objectives: the evolution of lunar exospheric and sputtered ions, the origin of electric fields contributing to dust charging and circulation, the structure of the lunar interior as inferred by electromagnetic sounding, and the lunar surface properties as revealed by studies of crustal magnetism. ARTEMIS is synergistic with concurrent NASA missions LRO and LADEE and the anticipated deployment of the International Lunar Network. It is expected to be a key element in the NASA Heliophysics Great Observatory and to play an important role in international plans for lunar exploration.  相似文献   

10.
The Jupiter Energetic Particle Detector Instruments (JEDI) on the Juno Jupiter polar-orbiting, atmosphere-skimming, mission to Jupiter will coordinate with the several other space physics instruments on the Juno spacecraft to characterize and understand the space environment of Jupiter’s polar regions, and specifically to understand the generation of Jupiter’s powerful aurora. JEDI comprises 3 nearly-identical instruments and measures at minimum the energy, angle, and ion composition distributions of ions with energies from H:20 keV and O: 50 keV to >1 MeV, and the energy and angle distribution of electrons from <40 to >500 keV. Each JEDI instrument uses microchannel plates (MCP) and thin foils to measure the times of flight (TOF) of incoming ions and the pulse height associated with the interaction of ions with the foils, and it uses solid state detectors (SSD’s) to measure the total energy (E) of both the ions and the electrons. The MCP anodes and the SSD arrays are configured to determine the directions of arrivals of the incoming charged particles. The instruments also use fast triple coincidence and optimum shielding to suppress penetrating background radiation and incoming UV foreground. Here we describe the science objectives of JEDI, the science and measurement requirements, the challenges that the JEDI team had in meeting these requirements, the design and operation of the JEDI instruments, their calibrated performances, the JEDI inflight and ground operations, and the initial measurements of the JEDI instruments in interplanetary space following the Juno launch on 5 August 2011. Juno will begin its prime science operations, comprising 32 orbits with dimensions 1.1×40 RJ, in mid-2016.  相似文献   

11.
The five THEMIS spacecraft and a dedicated ground-based observatory array will pinpoint when and where substorms occur, thereby providing the observations needed to identify the processes that cause substorms to suddenly release solar wind energy stored within the Earth’s magnetotail. The primary science which drove the mission design enables unprecedented observations relevant to magnetospheric research areas ranging from the foreshock to the Earth’s radiation belts. This paper describes how THEMIS will reach closure on its baseline scientific objectives as a function of mission phase.  相似文献   

12.
13.
The Gravity Recovery and Interior Laboratory (GRAIL) mission to the Moon utilized an integrated scientific measurement system comprised of flight, ground, mission, and data system elements in order to meet the end-to-end performance required to achieve its scientific objectives. Modeling and simulation efforts were carried out early in the mission that influenced and optimized the design, implementation, and testing of these elements. Because the two prime scientific observables, range between the two spacecraft and range rates between each spacecraft and ground stations, can be affected by the performance of any element of the mission, we treated every element as part of an extended science instrument, a science system. All simulations and modeling took into account the design and configuration of each element to compute the expected performance and error budgets. In the process, scientific requirements were converted to engineering specifications that became the primary drivers for development and testing. Extensive simulations demonstrated that the scientific objectives could in most cases be met with significant margin. Errors are grouped into dynamic or kinematic sources and the largest source of non-gravitational error comes from spacecraft thermal radiation. With all error models included, the baseline solution shows that estimation of the lunar gravity field is robust against both dynamic and kinematic errors and a nominal field of degree 300 or better could be achieved according to the scaled Kaula rule for the Moon. The core signature is more sensitive to modeling errors and can be recovered with a small margin.  相似文献   

14.
2001 Mars Odyssey Mission Summary   总被引:1,自引:0,他引:1  
Saunders  R.S.  Arvidson  R.E.  Badhwar  G.D.  Boynton  W.V.  Christensen  P.R.  Cucinotta  F.A.  Feldman  W.C.  Gibbs  R.G.  Kloss  C.  Landano  M.R.  Mase  R.A.  McSmith  G.W.  Meyer  M.A.  Mitrofanov  I.G.  Pace  G.D.  Plaut  J.J.  Sidney  W.P.  Spencer  D.A.  Thompson  T.W.  Zeitlin  C.J. 《Space Science Reviews》2004,110(1-2):1-36
The 2001 Mars Odyssey spacecraft, now in orbit at Mars, will observe the Martian surface at infrared and visible wavelengths to determine surface mineralogy and morphology, acquire global gamma ray and neutron observations for a full Martian year, and study the Mars radiation environment from orbit. The science objectives of this mission are to: (1) globally map the elemental composition of the surface, (2) determine the abundance of hydrogen in the shallow subsurface, (3) acquire high spatial and spectral resolution images of the surface mineralogy, (4) provide information on the morphology of the surface, and (5) characterize the Martian near-space radiation environment as related to radiation-induced risk to human explorers. To accomplish these objectives, the 2001 Mars Odyssey science payload includes a Gamma Ray Spectrometer (GRS), a multi-spectral Thermal Emission Imaging System (THEMIS), and a radiation detector, the Martian Radiation Environment Experiment (MARIE). THEMIS and MARIE are mounted on the spacecraft with THEMIS pointed at nadir. GRS is a suite of three instruments: a Gamma Subsystem (GSS), a Neutron Spectrometer (NS) and a High-Energy Neutron Detector (HEND). The HEND and NS instruments are mounted on the spacecraft body while the GSS is on a 6-m boom. Some science data were collected during the cruise and aerobraking phases of the mission before the prime mission started. THEMIS acquired infrared and visible images of the Earth-Moon system and of the southern hemisphere of Mars. MARIE monitored the radiation environment during cruise. The GRS collected calibration data during cruise and aerobraking. Early GRS observations in Mars orbit indicated a hydrogen-rich layer in the upper meter of the subsurface in the Southern Hemisphere. Also, atmospheric densities, scale heights, temperatures, and pressures were observed by spacecraft accelerometers during aerobraking as the spacecraft skimmed the upper portions of the Martian atmosphere. This provided the first in-situ evidence of winter polar warming in the Mars upper atmosphere. The prime mission for 2001 Mars Odyssey began in February 2002 and will continue until August 2004. During this prime mission, the 2001 Mars Odyssey spacecraft will also provide radio relays for the National Aeronautics and Space Administration (NASA) and European landers in early 2004. Science data from 2001 Mars Odyssey instruments will be provided to the science community via NASA’s Planetary Data System (PDS). The first PDS release of Odyssey data was in October 2002; subsequent releases occur every 3 months.  相似文献   

15.
The NASA Radiation Belt Storm Probes (RBSP) mission addresses how populations of high energy charged particles are created, vary, and evolve in space environments, and specifically within Earth’s magnetically trapped radiation belts. RBSP, with a nominal launch date of August 2012, comprises two spacecraft making in situ measurements for at least 2 years in nearly the same highly elliptical, low inclination orbits (1.1×5.8 RE, 10°). The orbits are slightly different so that 1 spacecraft laps the other spacecraft about every 2.5 months, allowing separation of spatial from temporal effects over spatial scales ranging from ~0.1 to 5 RE. The uniquely comprehensive suite of instruments, identical on the two spacecraft, measures all of the particle (electrons, ions, ion composition), fields (E and B), and wave distributions (d E and d B) that are needed to resolve the most critical science questions. Here we summarize the high level science objectives for the RBSP mission, provide historical background on studies of Earth and planetary radiation belts, present examples of the most compelling scientific mysteries of the radiation belts, present the mission design of the RBSP mission that targets these mysteries and objectives, present the observation and measurement requirements for the mission, and introduce the instrumentation that will deliver these measurements. This paper references and is followed by a number of companion papers that describe the details of the RBSP mission, spacecraft, and instruments.  相似文献   

16.
17.
18.
The Japanese lunar orbiter Kaguya (SELENE) was successfully launched by an H2A rocket on September 14, 2007. On October 4, 2007, after passing through a phasing orbit 2.5 times around the Earth, Kaguya was inserted into a large elliptical orbit circling the Moon. After the apolune altitude was lowered, Kaguya reached its nominal 100 km circular polar observation orbit on October 19. During the process of realizing the nominal orbit, two subsatellites Okina (Rstar) and Ouna (Vstar) were released into elliptical orbits with 2400 km and 800 km apolune, respectively; both elliptical orbits had 100 km perilunes. After the functionality of bus system was verified, four radar antennas and a magnetometer boom were extended, and a plasma imager was deployed. Acquisition of scientific data was carried out for 10 months of nominal mission that began in mid-December 2007. During the 8-month extended mission, magnetic fields and gamma-rays from lower orbits were measured; in addition to this, low-altitude observations were carried out using a Terrain Camera, a Multiband Imager, and an HDTV camera. New data pertaining to an intense magnetic anomaly and GRS data with higher spatial resolution were acquired to study magnetism and the elemental distribution of the Moon. After some orbital maneuvers were performed by using the saved fuel, the Kaguya spacecraft finally impacted on the southeast part of the Moon. The Kaguya team has archived the initial science data, and since November 2, 2009, the data has been made available to public, and can be accessed at the Kaguya homepage of JAXA. The team continues to also study and publish initial results in international journals. Science purposes of the mission and onboard instruments including initial science results are described in this overview.  相似文献   

19.
The THEMIS Mission   总被引:1,自引:0,他引:1  
The Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission is the fifth NASA Medium-class Explorer (MIDEX), launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms. The mission employs five identical micro-satellites (hereafter termed “probes”) which line up along the Earth’s magnetotail to track the motion of particles, plasma and waves from one point to another and for the first time resolve space–time ambiguities in key regions of the magnetosphere on a global scale. The probes are equipped with comprehensive in-situ particles and fields instruments that measure the thermal and super-thermal ions and electrons, and electromagnetic fields from DC to beyond the electron cyclotron frequency in the regions of interest. The primary goal of THEMIS, which drove the mission design, is to elucidate which magnetotail process is responsible for substorm onset at the region where substorm auroras map (~10 RE): (i) a local disruption of the plasma sheet current (current disruption) or (ii) the interaction of the current sheet with the rapid influx of plasma emanating from reconnection at ~25 RE. However, the probes also traverse the radiation belts and the dayside magnetosphere, allowing THEMIS to address additional baseline objectives, namely: how the radiation belts are energized on time scales of 2–4 hours during the recovery phase of storms, and how the pristine solar wind’s interaction with upstream beams, waves and the bow shock affects Sun–Earth coupling. THEMIS’s open data policy, platform-independent dataset, open-source analysis software, automated plotting and dissemination of data within hours of receipt, dedicated ground-based observatory network and strong links to ancillary space-based and ground-based programs. promote a grass-roots integration of relevant NASA, NSF and international assets in the context of an international Heliophysics Observatory over the next decade. The mission has demonstrated spacecraft and mission design strategies ideal for Constellation-class missions and its science is complementary to Cluster and MMS. THEMIS, the first NASA micro-satellite constellation, is a technological pathfinder for future Sun-Earth Connections missions and a stepping stone towards understanding Space Weather.  相似文献   

20.
人工智能在航天飞行任务规划中的应用研究   总被引:6,自引:0,他引:6  
席政 《航空学报》2007,28(4):791-795
 在航天飞行任务中,如何设计航天器的飞行过程,如何确定地面对航天器的控制操作,如何制定飞行控制计划等,是地面飞行控制中心面临的重大问题,也是航天飞行任务规划所要解决的基本问题。在充分认识和把握人工智能基本原理、方法和技术的基础上,提出了一个基于规则演绎和状态演化的生长式推理模型,并对模型的特性进行了详细讨论,然后导出了该模型在航天飞行任务规划问题中的具体形式,从而成功地解决了航天任务自动规划的难题。通过在实际航天任务中的应用和验证,不仅证明该模型和方法是正确的、可行的和高效的,而且证明人工智能在航天飞行任务规划中有着广阔的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号