首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
当前,主要通过采用惯导/卫星导航组合或者惯导/里程计组合的方式来实现 车辆的定位定向;卫星信号良好时,惯导系统与卫星导航组合实现车辆定位定向,当卫 星导航信号不好甚至没有信号无法正常工作时,惯导系统与里程计组合实现车辆定位定 向。提出一种惯导/卫星导航/里程计三者的一体化组合方案,针对惯导、北斗、里程计 这三项测量设备构成的组合系统建立了统一的误差状态模型、组合量测模型以及反馈修 正模型,并通过卡尔曼滤波器来实现三者的一体化紧组合,这种惯导/北斗/里程计一体 化的紧组合方式,能更好地实现三者信号之间的充分交流与融合。将这种一体化紧组合 方法与传统的惯导/北斗组合、惯导/里程计组合方法进行了仿真比较,结果表明:惯导/ 北斗/里程计一体化的紧组合方法能更加快速、准确得到传感器误差( 包含惯组误差、 北斗误差、里程计误差)的在线估计,更能有效提高各传感器的测量精度。  相似文献   

2.
针对高轨卫星导航接收机接收信号弱、可用卫星少及定位精度差的问题,提出利用恒温晶振的频率稳定性抑制观测噪声,进一步改善定位精度的时钟辅助定位算法。通过区分星历星钟误差和用户测距误差在本算法中的不同传递路径,在理论上给出了算法的定位精度与星座几何构形之间的关系,并指出本算法在高轨场景下具有显著的精度优势,在低轨和地面场景下没有精度优势。仿真试验证实了算法的有效性,在典型的高轨场景下,本算法的单点定位误差仅是标准算法的1/10。  相似文献   

3.
在我国北斗三号卫星导航系统全面完成组网建设的背景下,世界卫星导航步入新时代。各卫星导航大国均瞄准更高服务精度、更加多样功能、更加可靠服务,正在着手开展新一代系统建设和技术迭代。随着各国对于大型低轨通信星座的积极开发与广泛部署,应用低轨卫星技术实现导航增强与PNT系统备份能力,因其易与GNSS协同,具有提高全球自主导航精度、拓展全球卫星导航应用市场的巨大潜力而成为研究热点。面向低轨导航增强技术,首先总结了低轨卫星的最新态势,梳理了卫星导航增强服务模式,并详细分析了低轨通信星座导航精度增强及导航信号增强两方面的技术动向。在此基础上,重点针对导航增强频率的兼容互操作、通信/导航信号一体化设计、高动态导航增强信号捕获与跟踪等方面,对低轨卫星导航增强体系未来的发展机遇以及面临的技术挑战进行了展望。此外,还基于美国铱星系统实收采集信号开展了定位服务性能试验分析,结果表明600个历元内收敛定位精度优于100m,相关分析成果可为我国低轨导航增强建设提供参考和借鉴。  相似文献   

4.
由于高轨空间超出北斗卫星导航系统的正常服务区域,导航信号微弱、可见性差,难以实现高轨飞行器全程稳定可靠的导航定位服务。提出了以空间卫星为时空基准传递平台,向高轨空间区域发射导航信号,从而提高高轨飞行器导航性能的方法,并展开面向高轨空间的北斗导航性能增强星座选型研究。基于卫星可见性、精度衰减因子(DOP)、信号接收门限和所需增强卫星数目等评估指标,仿真分析了基于LEO星座、MEO星座和HEO星座的北斗导航增强性能。  相似文献   

5.
首先介绍了低轨增强北斗精密单点定位(PPP)的观测模型、参数估计与数据处理策略。然后对低轨导航增强仿真验证系统及误差仿真配置进行了说明,基于验证系统仿真了全球20个监测站的北斗及低轨导航数据,并通过单北斗及低轨增强北斗静态PPP试验,给出了低轨增强北斗的高精度定位测试评估结果。结果表明,加入150颗低轨卫星观测量后,20个测站PPP精度收敛到10cm之内只需约1min;低轨增强北斗实现静态收敛后,定位精度东方向均值为1.5cm,北方向均值为0.3cm,高程方向均值为2.2cm。相较于北斗单独精密定位,20个监测站收敛后组合定位精度从5cm左右提升到3cm左右。加入低轨卫星可大大加快PPP收敛速度,提升定位精度,验证了低轨卫星在增强PPP精度和收敛速度上的优越性,同时仿真验证系统可支持全链路闭环仿真验证。  相似文献   

6.
全球卫星导航系统成熟的产业推广和技术应用极大地牵引了卫星导航发展需求,使相关学者愈来愈关注恶劣电磁环境下的抗干扰技术以及分米、厘米级高精度导航定位服务。低轨星座优越的平台/轨道特性使其被誉为未来极具潜力的卫星导航手段。特别是近十年商业航天的蓬勃发展,带动卫星平台技术及火箭运载技术突飞猛进,大大降低了低轨卫星制造与发射成本,使得面向低轨星座的导航定位技术成为研究热点和发展方向。首先深入地剖析了不同历史阶段低轨导航的应用方向和技术体制,梳理归纳了低轨卫星星座独立定位及低中高轨卫星联合定位两种应用模式的技术特点,然后分析了未来低轨导航在整个卫星导航系统体系中的应用前景和技术挑战,为未来低轨导航系统建设和发展提供设计参考与技术借鉴。  相似文献   

7.
针对全球卫星导航系统(GNSS)因频点单一、落地功率低、易受电磁干扰以及存在覆盖较差区域等潜在的被拒止或被干扰导致的导航系统性能降低甚至失效的问题,提出了一种基于星链(Starlink)机会信号融合惯性导航系统(INS)的飞行器动态组合导航方法。首先分析了星链信号体制,建立了基于星链星座卫星下行机会信号的瞬时多普勒定位观测模型,设计了一种基于频率细分的快速最大似然多普勒频率估计方法,然后建立了基于扩展卡尔曼滤波(EKF)的Starlink机会信号/INS的组合导航模型,并对该导航方法进行了实验及分析。结果表明,该方法可为飞行器提供长航时、连续、高精度的导航。动态飞行情况下,该方法可实现平均优于25 m的三维定位精度和平均优于0.1 m/s的速度估计精度,比相同观测时间下的惯导精度提高了1~2个数量级,显著提高了飞行器的导航精度,可为战略导航提供方法和技术支撑。  相似文献   

8.
针对光纤陀螺SINS(捷联惯性导航系统)与GNSS(全球卫星导航系统)组合导航产品高动态性能测试难的问题,本文研究了一种组合导航测试系统,并对捷联惯导模拟源进行了重点研究.首先以捷联惯导解算算法为基础逆推出了捷联惯导模拟源算法,然后对捷联惯导模拟源进行了功能实现,可以与导航卫星信号模拟源同步向组合导航计算机发送数据用于组合导航解算.最后对捷联惯导模拟源的功能与性能进行了验证.结果表明,捷联惯导模拟源功能正常,模拟数据的精度达到设计要求.利用此惯导模拟源与导航卫星信号模拟源配套使用,将可满足后续SINS/GNSS组合导航系统的相关性能测试或验证要求.  相似文献   

9.
根据高超声速飞行器导航的主要需求,针对高动态飞行条件下可能出现的卫星导航信号跟踪丢失等问题,本文设计了基于卫星观测值在线补偿的组合导航方法,该方法可在GPS导航接收机失锁的情况下,基于预存卫星星历外推模型和卫星信号误差模型,在线重构虚拟卫星导航观测值并补偿由信号失锁导致的组合滤波器发散情况,从而确保飞行器组合导航的精度。结合助推—滑翔高超声速飞行器航迹对该方案进行了仿真验证,结果表明,该方案能够在助推—滑翔高超声速飞行器强动态条件下确保卫星导航数据输出的连续性,在一定程度上克服了卫星导航信号丢失带来的不利影响,确保高超声速飞行器GPS/捷联惯导组合导航的基本导航定位性能。  相似文献   

10.
为了在高动态条件下对惯导系统工具误差进行在线估计,提出了基于卫星导航接收机原始测量信息的惯导/卫星导航深组合导航滤波方法,该方法是以卫星导航接收机伪距和伪距率作为观测量,对惯导系统位置、速度、姿态角和陀螺、加速度计零位等误差进行实时估计,并进行闭环补偿,解决了惯导系统长航时使用时,惯导系统误差随时间快速发散等问题。经理论仿真和试验验证,该方法可以有效地抑制惯导系统误差,具有工程实用价值。  相似文献   

11.
《中国航空学报》2021,34(4):265-278
Low Earth Orbit (LEO) satellite for navigation augmentation applications can significantly reduce the precise positioning convergence time and attract increasing attention recently. A few LEO Navigation Augmentation (LEO-NA) constellations have been proposed, while corresponding constellation design methodologies have not been systematically studied. The LEO-NA constellation generally consists of a huge number of LEO satellites and it strives for multiple optimization purposes. It is essentially different from the communication constellation or earth observing constellation design problem. In this study, we modeled the LEO-NA constellation design problem as a multi-objective optimization problem and solve this problem with the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm. Three objectives are used to strive for the best tradeoff between the augmentation performance and deployment efficiency, namely the Position Dilution of Precision (PDOP), visible LEO satellites and the orbit altitude. A fuzzy set approach is used to select the final constellation from a set of Pareto optimal solutions given by the MOPSO algorithm. To evaluate the performance of the optimized constellation, we tested two constellations with 144 and 288 satellites and each constellation has three optimization schemes: the polar constellation, the single-layer constellation and the two-layer constellation. The results indicate that the optimized two-layer constellation achieves the best global coverage and is followed by the single-layer constellation. The MOPSO algorithm can help to improve the constellation design and is suitable for solving the LEO-NA constellation design problem.  相似文献   

12.
如何实现GNSS全球瞬时高精度服务一直是GNSS领域的迫切需求和研究热点.采用低轨导航增强技术体制,利用低轨卫星运动几何变化快的特点,解决GNSS精密单点定位快速收敛问题和性能提升问题,是GNSS高精度定位服务未来发展的重要方向.从全球瞬时高精度服务内涵出发,阐述了天象一号低轨导航增强试验系统的技术体制,包括系统工作模...  相似文献   

13.
惯导与速率计构成的组合系统是机动作战车辆较常使用的自主定位定向系统,其惯导姿态精度将直接影响组合定位精度。文章利用车辆运动途中的地标信息,讨论了车载惯导姿态误差估计与修正技术,通过仿真分析了地标位置与车辆零速信息在惯导姿态修正过程中的作用。结果表明:利用地标信息是进行车载惯导姿态修正较为实用的途径,在此基础上可以有效提高车载惯导/速率计组合定位系统的精度。  相似文献   

14.
针对全球卫星导航系统(GNSS)精密单点定位(PPP)收敛时间过长的问题,提出了利用低轨卫星(LEO)几何结构变化快的优势,增强GNSS非差非组合PPP(UPPP)的收敛性能。选取中低纬度地区28个能接收GPS、GALILEO和BDS3信号的测站观测数据,比较了极轨和混合LEO星座的增强效果。结果表明:混合LEO星座增强GPS、GALILEO和BDS组合系统时,各测站收敛时间减少60%~80%,70%的测站收敛速度优于极轨星座。当混合LEO星座增强单BDS时,CL和GCL组合系统的收敛时间相当,ENU方向定位误差变化基本一致。收敛时间从10~20 min 下降至3 min以内,原因是混合LEO增强BDS定位时,大大改善了卫星的空间结构。  相似文献   

15.
在低轨卫星上搭载导航载荷,为北斗系统提供有效的备份及辅助性能提升手段,是近年来卫星导航领域专家学者探讨的热点问题.针对全球卫星导航系统信号在恶劣电磁环境下的受扰问题,提出了一种利用单颗低轨卫星实现北斗备份和辅助的方法.北斗备份是指通过单颗低轨星独立为地面用户提供导航服务.北斗辅助是指利用单颗低轨星信号及信息,为地面用户...  相似文献   

16.
针对当前卫星导航发展的瓶颈问题,结合当前低轨互联网星座蓬勃发展的趋势,提出了基于低轨互联网星座的全球导航增强系统建设方案。从新兴用户群体对PNT性能的需求、低轨互联网星座的优势、建设成本优势以及通导融合优势等角度出发,分析了低轨全球导航增强的发展机遇。从频率资源、功率资源以及收敛时间三方面,总结了发展低轨全球导航增强系统面临的挑战。在此基础上,为系统体制、信号体制以及系统建设提出了发展建议。最后给出了总结认为低轨全球导航增强采用天基监测+信号增强体制,信号落地功率有望提升15~30dB,收敛时间缩短至秒级,信号频段向Ka频段扩展,最终实现城市挑战性环境下快收敛、高精度、高完好、高安全、高可用的PNT目标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号