首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
GPS高精度定位技术在动态复杂环境中,其定位精度、可靠性和连续性因卫星信号频繁失锁而变差。为此,提出了采用基于RTS滤波(Rauch-Tung-Striebel Filter)的GPS+BDS非差非组合PPP(Precise Point Positioning)与INS(Inertial Navigation System)紧组合模型的策略来克服GPS在动态定位中的弱点。其中,采用GPS+BDS双系统观测数据,可提高PPP解算中的可用卫星数,改善星站间定位几何强度和提高PPP收敛速度;采用PPP/INS紧组合,利用INS的自主定位特性和短期高精度特性,可有效改善复杂环境下的定位精度和连续性;采用RTS滤波,可进一步提高PPP/INS紧组合性能。首先推导了GPS+BDS非差非组合函数模型、PPP/INS紧组合函数模型和RTS滤波函数模型,然后利用一组车载动态数据,对动态GPS PPP、GPS+BDS PPP、GPS/INS紧组合、GPS+BDS PPP/INS紧组合和基于RTS的GPS+BDS PPP/IMU紧组合的定位、测速和定姿性能进行分析。实验结果表明,该方案可有效提高定位(58%~72%)、测速(74%~82%)和定姿(4%~23%)精度,特别是对卫星失锁期间的定位性能改善尤为明显。  相似文献   

2.
针对全球导航卫星系统(GNSS)在受挑战的环境中,出现导航卫星信号被干扰或遮挡,导致可见卫星数目无法满足定位最低要求的情况。利用低轨(LEO)卫星具有信号到达地面功率高、抗干扰能力强,以及在未来将进行大量部署的特点,可为GNSS的导航服务提供备份与补充。提出了基于非合作LEO卫星辅助GNSS联合定位算法,不同于现有的LEO/GNSS联合定位算法将低轨卫星简单地视为轨道降低的导航卫星,该算法以LEO为通信卫星,从非合作、非导航特性的实际情况出发,将LEO的多普勒与GNSS的伪距、多普勒相结合求解用户位置信息,并以ORBCOMM低轨通信卫星联合GPS为例进行了仿真实验,实验结果验证了算法的可行性与性能。  相似文献   

3.
现有低轨(LEO)卫星导航研究主要以低轨星座独立导航定位和增强全球卫星导航系统(GNSS)导航定位为主,对低轨卫星和惯性导航系统(INS)组合导航技术研究较少。本文面向应用较小规模低轨星座资源实现米级定位精度的需求,提出了一种低轨星座/惯导紧组合导航方法,系统性地分析了不同规模低轨星座、不同精度级别惯导器件以及不同导航信号播发频度下组合导航定位的性能,并利用构建的仿真试验系统进行了低轨星座/惯导紧组合导航方法的仿真试验验证。试验结果表明,相较于低轨星座独立导航,低轨星座/惯导紧组合导航在星座不满足四重覆盖时仍能达到米级定位精度,并且在低轨星座规模较小和导航信号播发频度较低时,惯导测量精度对组合导航定位精度影响明显。研究结果表明,在利用低轨卫星进行导航时,通过引入惯性观测辅助低轨卫星导航,可有效提高导航效能和精度,为低轨星座和导航信号播发方式设计带来更多的选择。  相似文献   

4.
首先介绍了低轨增强北斗精密单点定位(PPP)的观测模型、参数估计与数据处理策略。然后对低轨导航增强仿真验证系统及误差仿真配置进行了说明,基于验证系统仿真了全球20个监测站的北斗及低轨导航数据,并通过单北斗及低轨增强北斗静态PPP试验,给出了低轨增强北斗的高精度定位测试评估结果。结果表明,加入150颗低轨卫星观测量后,20个测站PPP精度收敛到10cm之内只需约1min;低轨增强北斗实现静态收敛后,定位精度东方向均值为1.5cm,北方向均值为0.3cm,高程方向均值为2.2cm。相较于北斗单独精密定位,20个监测站收敛后组合定位精度从5cm左右提升到3cm左右。加入低轨卫星可大大加快PPP收敛速度,提升定位精度,验证了低轨卫星在增强PPP精度和收敛速度上的优越性,同时仿真验证系统可支持全链路闭环仿真验证。  相似文献   

5.
随着定位技术的不断发展及多系统导航定位技术的逐步推广,多系统组合导航定位已经成为了GNSS导航定位领域中的主要发展趋势。主要阐述了GPS/BDS组合相对定位的观测方程和数学模型,并根据实测数据对比分析,从卫星可见性、精度因子、定位精度和均方根误差等方面对GPS、BDS及GPS/BDS组合定位系统的定位性能、定位精度进行了比较。研究结果表明,较单一的GPS和BDS系统定位,采用GPS/BDS组合定位可有效提高卫星可见数目和DOP值,且稳定性更好。GPS/BDS组合定位的定位精度也明显优于单一系统,这对GNSS高精度导航定位具有重要的参考价值。  相似文献   

6.
全球卫星导航系统(global navigation satellite system,GNSS)可提供全球范围内全天候高精度导航、定位和授时服务。以精密单点定位(precise point positioning,PPP)为代表的绝对定位技术凭借定位精度高且全球一致、作业范围灵活等优势受到广泛关注,但是较长的收敛时间,限制了其在实时、快速精密定位应用中的使用。为解决上述问题,提出了超宽带(ultra-wideband,UWB)增强PPP方法,在多星座PPP中紧密集成UWB测距信息,以提高GNSS PPP性能。实验结果表明,在动态场景下,融合UWB量测使GPS/GAL双系统PPP在东、北、天3个方向的位置均方根(root mean square,RMS)值分别减少了76.99%、21.46%、64.53%,GPS/GAL/BDS三系统PPP减少了69.69%、37.21%、61.32%,并且收敛时间分别加快62.78%和57.75%。关于锚点数(几何构型)的评估表明,仅利用4个锚点就能将双系统和三系统3D误差RMS值减少67.98%、59.35%,收敛时间加快76.14%、62.68%,达到成本和性能综合最优的增强效果。  相似文献   

7.
由于高轨空间超出北斗卫星导航系统的正常服务区域,导航信号微弱、可见性差,难以实现高轨飞行器全程稳定可靠的导航定位服务。提出了以空间卫星为时空基准传递平台,向高轨空间区域发射导航信号,从而提高高轨飞行器导航性能的方法,并展开面向高轨空间的北斗导航性能增强星座选型研究。基于卫星可见性、精度衰减因子(DOP)、信号接收门限和所需增强卫星数目等评估指标,仿真分析了基于LEO星座、MEO星座和HEO星座的北斗导航增强性能。  相似文献   

8.
近年来,卫星导航技术发展迅速.卫星导航系统以精密时间测量技术为基础,实现了伪距测量,进而实现定位.同时,卫星导航系统还提供了高精度授时功能.综述了卫星导航系统的授时和时间频率传递技术、基于通信卫星的授时技术以及双向卫星时间频率传递(TWSTFT)技术等.随着我国北斗卫星导航系统(BDS)的建成和提供服务,BDS授时应用研究正在快速发展.基于BDS/GNSS多系统的精密单点定位(PPP)时间传递技术已成为重点研究方向,未来将会应用于国际时间比对.同时,随着卫星通信技术尤其是低轨通信卫星技术的快速发展,低轨通信卫星授时会成为一个有潜力的研究方向.  相似文献   

9.
为快速、有效地获取地震发生阶段震源周边地区站点的动态位移,为地震预警系统提供高可靠性的地表形变信息,利用全球导航卫星系统(global navigation satellite system, GNSS)高频观测数据,基于非差估计法对多模GNSS卫星钟差进行实时估计及性能分析,并将其应用于精密单点定位(precise point positioning, PPP)实时计算2021年漾濞Mw6.4地震和玛多Mw 7.4地震的地面动态形变。结果表明,GNSS四系统实时估计卫星钟差的标准差(standard deviation, STD)均值为0.142 ns,其多系统组合PPP动态解的平均标准差在水平方向达到0.5 cm,高程方向达到1.0 cm,计算得到的地震动态位移波形相对GPS单系统更为稳定,而且能够获得较为准确的同震形变。  相似文献   

10.
介绍了空间飞行器综合定轨与参数分析软件COMPASS的开发过程。软件的初级阶段目标是可以利用SLR观测对多颗激光卫星进行同时定轨、可以利用非差GPS观测对GPS星座进行同时定轨,并估计有意叉的地学参数。COMPASS的开发采取了由简到繁、循序渐进的技术策略,软件开发经历了这样几个主要过程:多星多技术定轨框架的建立。利用SLR观测确定GPS卫星的轨道,利用IGS的SP3轨道确定GPS星座的轨道,利用非差GPS伪距观测确定GPS星座的轨道,利用非差GPS伪距和相位观测确定GPS星座的轨道。激光卫星的定轨精度已经达到国际水平,可以用于提供国际服务(如IERSEOP;ILRS快速分析);GPS定轨内符精度达到国际先进水平,平均外符精度好于30cm。  相似文献   

11.
高精度的卫星时钟修正是全球卫星导航系统实时精密单点定位和授时服务的重要基础。为了提高GNSS钟差预报精度,需要对GNSS星载原子钟的周期特性进行分析。基于2016年全年的GNSS精密卫星钟差数据,利用中位数方法进行了数据预处理,使用多项式拟合模型分析了卫星钟的拟合残差,利用频谱分析法分析了BDS、GPS卫星钟差的周期特性,全面分析了BDS、GPS星载原子钟的周期特性。分析结果表明:除Cs钟外,其他卫星钟差都表现出较好的周期特性,BDS、GPS的主周期项基本在12h、24h、6h附近;同时不同的轨道、原子钟,其钟差周期项不同,而相同的轨道类型,其钟差周期项也存在一定差异;卫星的钟差主周期分别近似为其卫星轨道周期的1/2倍、1倍、2倍。  相似文献   

12.
针对目前GNSS无线电掩星大气探测卫星星座参数依赖大量仿真计算进行统计选取的研究现状,通过将探测卫星星下点与大气测点间地心角距作为观测半径提出了一种虚拟“星—地”遥感假设,给出了一种崭新的掩星测点预估方法,具有计算速度快的特点.基于该方法推导了探测星座参数与大气探测覆盖性之间的极值相关特性,建立了GNSS无线电掩星大气探测卫星星座设计准则,并以GPS和BD为兼容性观测信源完成了GNSS掩星大气探测混合卫星星座设计.通过仿真试验,验证了设计方法的快速性和可行性,GPS+BD掩星大气探测混合星座每日可实现掩星探测量为COSMIC星座的3倍以上,12h内掩星测点全球分布均匀度提升12%.  相似文献   

13.
分别探讨了GPS精密单点定位技术、GPS/BDS精密单点定位技术及BDS精密单点定位技术在地形较为陡峭、有部分卫星被遮挡的滑坡体特殊环境中的应用能力。选用四川西山村8个监测站,总时长跨度16个月的观测数据进行试验及分析,结果表明:西山村滑坡体整体正以平均9.2mm/月的速度向南滑动,并伴随着垂向上的整体下沉。精度区间统计结果显示,平均5.93h时长的GPS精密单点定位的解算精度基本能达到较高水平且相对稳定,可以有效监测变形较缓慢的滑坡体。GPS/BDS的解算结果的精度接近于单GPS的水平,但由于BDS的数据可利用率整体上不稳定,拉低了GPS/BDS的解算结果的整体精度,表明了当前的单BDS精密单点定位的精度受地形等外界环境变化的影响更大。利用观测时长及数据的可利用率指标加权处理解算结果,降低了观测质量不高的结果对整体结果的贡献比,提高了定位结果的精度和容错率。  相似文献   

14.
精密单点定位(precise point positioning,PPP)反演大气可降水量(precipitable water vapor,PWV)具有精度高、实时性强等优点,能够在灾害监测、降雨预报及探测降水信息等方面发挥重要作用。为评估整周模糊度固定模式下PPP-AR(PPP ambiguity resolution)反演PWV的性能,选取全球范围16个MGEX站2022年4个时段的观测数据,采用最终精密星历解算,设置不同星座组合(GPS,BDS-3,GPS+BDS-3,GPS+GLO+GAL+BDS-3)获取对流层延迟(zenith total delay,ZTD)估值,并转换为PWV。从PPP-ZTD与IGS-ZTD的相关性、PPP-ZTD收敛时间、ZTD估值精度和PPP-PWV估值精度4个方面评价多模PPP-AR探测水汽的性能。结果表明,与单(G、C)、双系统(GC)固定解相比,多系统(GREC)固定解获取ZTD估值更加精确,相关系数更高。相较于单、双系统,多系统具有更快的收敛速度,收敛时间分别缩短了27%,25%和20%,多系统固定解与浮点解相比收敛时间缩短11%。此外,对GNSS PPP反演的PWV与探空站PWV(RS-PWV)进行对比,结果表明,WUH2站与HOB2站单、双、多系统固定解、多系统浮点解(float-GREC)的平均均方根误差分别为6.40 mm,6.48 mm,6.19 mm,6.17 mm,6.19 mm和5.82 mm,5.77 mm,5.72 mm,5.62 mm,5.70 mm。多模下得到的PWV估值精度最高,可为高精度的水汽反演提供支持。  相似文献   

15.
《中国航空学报》2021,34(4):265-278
Low Earth Orbit (LEO) satellite for navigation augmentation applications can significantly reduce the precise positioning convergence time and attract increasing attention recently. A few LEO Navigation Augmentation (LEO-NA) constellations have been proposed, while corresponding constellation design methodologies have not been systematically studied. The LEO-NA constellation generally consists of a huge number of LEO satellites and it strives for multiple optimization purposes. It is essentially different from the communication constellation or earth observing constellation design problem. In this study, we modeled the LEO-NA constellation design problem as a multi-objective optimization problem and solve this problem with the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm. Three objectives are used to strive for the best tradeoff between the augmentation performance and deployment efficiency, namely the Position Dilution of Precision (PDOP), visible LEO satellites and the orbit altitude. A fuzzy set approach is used to select the final constellation from a set of Pareto optimal solutions given by the MOPSO algorithm. To evaluate the performance of the optimized constellation, we tested two constellations with 144 and 288 satellites and each constellation has three optimization schemes: the polar constellation, the single-layer constellation and the two-layer constellation. The results indicate that the optimized two-layer constellation achieves the best global coverage and is followed by the single-layer constellation. The MOPSO algorithm can help to improve the constellation design and is suitable for solving the LEO-NA constellation design problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号