首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigation into navigation satellite on board clock frequency references and performance are reported. The focus is on the stability of the clocks aboard the NAVSTAR GPS (Global Positioning System) and GLONASS satellites as well as those used by their respective maser control stations and associated time scales. Allan-variance techniques have been applied to determine the long-term time-domain behavior of satellite clocks in an attempt to identify different regions of power spectral density. Coupled with analysis of relative-frequency drift over a period of many weeks, this behavior allows the type of satellite onboard standard to be tentatively identified. The known nature of the GPS clocks has shown that the different types of clocks aboard the satellites (crystal, rubidium, and cesium) are distinguishable given a sufficient sample time. The same approach has been applied to the GLONASS satellites, and a comparison of the results obtained from GPS has allowed conjecture on the type of clock used by the GLONASS satellites. It appears that GLONASS has used clocks of the quality of rubidium atomic oscillators since at least 1986, and that the quality and performance of onboard standards have increased steadily with time. Some current satellites perform well enough in terms of frequency drift, flicker FM noise floor, and long-term stability to compare favorably with the cesium beam standards carried on NAVSTAR GPS satellites launched in 1983-84  相似文献   

2.
The possibility of the USSR's global satellite navigation system GLONASS and the NAVSTAR Global Positioning System using a common navigation system can only be determined following exhaustive testing of two systems in a variety of satellite and receiver modes and configurations. The authors describe their first attempts to carry out basic position-fixing and timing measurements with a single-channel, sequencing digital receiver in a C/A code phase-measurement mode using the GLONASS satellites. The receiver used to produce the fixes was a digital sequencing unit with a single stage of downconversion and followed by 1-bit quantization. Code acquisition was accomplished using 1-Q channels measuring code phase. The number of satellites available in the present preoperational phase heavily restricts the time and satellite configurations which can be tested. However, the results have encouraged the authors to propose a range of experiments aimed at evaluating the two systems and eventual integration  相似文献   

3.
The Navy Navigation Satellite System (TRANSIT) has provided 100% system reliability since being declared operational October 11, 1968. TRANSIT continues to carry out its function of precise, reliable, all weather navigation for the United States Navy and nearly 80,000 worldwide commercial users. TRANSIT's utility has been expanded to provide precise positioning information to those in the fields of geodesy and doppler surveying. While TRANSIT's history is illustrious, its life is limited. The transition from TRANSIT as the Navy's satellite navigation system to NAVSTAR GPS is planned for the 1990' s, with the result that TRANSIT is now scheduled for phase out by the United States Navy in 1994. This paper (essentially an update of reference [1]) will show the current status and plans for TRANSIT, following a brief historical overview.  相似文献   

4.
A method to apply the latest technology in Global Navigation Satellite Systems (GNSS), in particular the U.S. NAVSTAR GPS (NAVigation System for Timing And Ranging Global Positioning System) and the Russian GLONASS (GLObal'naya Nqvigatsionnaya Sputnikovaya Sistema), as a silent multistatic or parasitic radar for air defense is described. These satellite systems serving as navigational aids are well suited for low power radar applications due to the similarity and compatibility of the transmitted satellite signals with modern radar signals, such as spread spectrum modulation and Pseudo Random Noise (PRN) codes. Preliminary flight tests with airships, jet and propeller aircraft, helicopter, anti tank missiles and spaceborne targets (MIR) to study effects have been conducted  相似文献   

5.
GPS和GLONASS广播星历参数分析及算法   总被引:13,自引:0,他引:13  
GPS和GLONASS作为当今世界上在轨运行的两大卫星导航系统,其广播星历参数的设计和算法各具特点。本文探讨了GPS和GLONASS广播星历参数设计的物理背景,对它们各自的特征进行了分析比较,最后文章给出了GPS广播星历参数的一种拟合算法。  相似文献   

6.
卫星导航系统发展动态   总被引:4,自引:0,他引:4  
卫星导航系统是20世纪60年代中期发展起来的一种新型导航系统,90年代,卫星导航时入全运行和盛行时期,除了用于陆上,海上和空中的航行引导外,几乎扩展到军事和经济的各个方面,目前,除了已经运行的美国的GPS(全球定位系统)和俄罗斯的GLONASS(全球导航卫星系统)外,欧盟也正在积极开发伽利略系统。本文分别介绍GPS、GLONASS和伽利略系统的发展状况。  相似文献   

7.
The Global Positioning System (GPS) is a satellite navigation system capable of providing 15-m position accuracy. Its system time reference is currently one of the monitor station clocks. Using a simple two-clock example, it is shown analytically that improved reference time stability and overall state estimation accuracy can be achieved by constructing GPS time as an ensemble of all system clocks and that the problem of covariance divergence can be handled by the introduction of pseudomeasurement processing  相似文献   

8.
The complexity of the design of a Global Positioning System (GPS) user segment, as well as the performance demanded of the components, depends on user requirements such as total navigation accuracy. Other factors, for instance the expected satellite/vehicle geometry or the accuracy of an accompanying inertial navigation system can also affect the user segment design. Models of GPS measurements are used to predict user segment performance at various levels. Design curves are developed which illustrate the relationship between user requirements, the user segment design, and component performance  相似文献   

9.
There are a number of different error sources, such as multipath and thermal noise, which corrupt satellite navigation waveforms from their theoretical structure. However, even under ideal conditions the broadcast signals have some degree of deformation as a result of the practical individual hardware implementation. For the most demanding users of satellite navigation, such as aircraft navigation and landing systems, it is important to characterize the nominal signal structure in order to detect minimal variations resulting from hardware-based errors. Thus far such precorrelation Global Navigation Satellite System (GNSS) signal quality monitoring has been performed through high gain antennas, which allow for raising the GNSS spectrum above the thermal noise floor and observing the structure of the signal directly at the front end output. This paper describes a new approach to achieve such observability based on signal processing techniques, such as dithering and averaging, which leverage the repetitive nature of the GNSS signal. The paper presents how these techniques can drastically improve the signal-to-noise ratio (SNR) in postprocessing, allowing for the direct analysis of GNSS signals using traditional front end designs and conventional antennas. Results are predicted using the appropriate theory and validated using data collected from the Global Positioning System (GPS).  相似文献   

10.
The transmission of integrity information using a signal format compatible with the Global Positioning System (GPS) and relayed through a geostationary satellite repeater, which will be critical in achieving high integrity and availability of global navigation by satellite is discussed. The inclusion of navigation repeaters designed to fulfil this function, the next generation of INMARSAT spacecraft, INMARSAT-3 is examined. The global navigation satellite system (GNSS) integrity channel (GIC) will employ pseudorandom codes in the same family as, but distinct from, the codes reserved by GPS. The data format of the basic integrity channel is designed to convey user range error information for 24 to 40 satellites. A closed-loop timing compensation technique will be used at the uplinking Earth station, to make the signal's clock and carrier Doppler variations identical to those that would result from an onboard signal source. Therefore, the INMARSAT-3 satellites will increase the number of useful navigation satellites available to any user, and can also function as sources of precise timing. There is also a possibility that wide area differential corrections can be carried on the same signal  相似文献   

11.
The many advantages of Global Positioning System (GPS) based navigation have created a tremendous amount of interest in using GPS as the primary navigation aid onboard commercial and civil aircraft. Even in the presence of Selective Availability, the accuracy of GPS is sufficient to guide aircraft point-to-point between airports without requiring other navigation aids such as VOR or DME. Unfortunately, there is a finite probability that a GPS satellite will fail, causing the transmission of potentially misleading navigation information. Thus, before GPS can be widely adopted as a navigation aid, techniques must be devised to detect any possible failures and notify the user prior to the degradation of navigation accuracy. This paper discusses the problem of detecting possible GPS satellite failures using a technique called Receiver Autonomous Integrity Monitoring (RAIM)  相似文献   

12.
The Navstar Global Positioning System (GPS) Program is composed of three segments ? Space, Control, and User Equipment. The Space segment is responsible for the development and launch of the GPS satellite constellation. The Control segment is responsible for monitoring the satellite telemetry and providing updated navigation information to the satellites. The User Equipment (UE) segment is responsible for the development and procurement of the GPS receivers for a variety of host vehicle platforms. Recently, approval was given to the User segment to enter Low Rate Initial Production (LRIP). This approval marks the beginning of Phase III (production and deployment) of the GPS program. This paper will discuss the overall status of all three segments with an emphasis on the User Equipment segment as it enters the production phase of the program.  相似文献   

13.
郑在齐 《飞行力学》1996,14(4):84-88
GPS是美国正在大力发展的高精度卫星导航系统。主要叙述差分GPS在飞行试验中的应用,首先介绍GPS的伪距测量定位原理和测速原理,DGPS提高定位精度的原理。  相似文献   

14.
In this paper, the accuracy, integrity and continuity of function requirements for automatic landing systems using satellite navigation systems are discussed. Such a landing system is the integrated navigation and landing system (INLS) developed by Deutsche Aerospace (DASA/Ulm, Germany). The system concepts of the INLS are presented. It is shown how an INLS, based on system integration of a satellite navigation system (e.g., GPS) in realtime differential mode with an inertial measurement unit (IMU) in the accuracy class of an attitude and heading reference system (AHRS), can meet the requirements: the results given are mainly devoted to the accuracy issues. Using Kalman filter techniques, an in-flight calibration of the IMU is performed. The advantage of system integration, especially in dynamic flight conditions and during phases of flight with satellite masking, is explained. The accuracy, integrity and continuity of function of the INLS were proven by means of flight tests in a commuter aircraft using a laser tracker as a reference. These flight tests have shown that the short-term accuracy (<60 seconds) of the AHRS used within the INLS has been improved from low cost sensor quality to the accuracy of a high quality laser inertial navigation system (LNIS). With the presented INLS, a landing at any airfield, not equipped with conventional Instrument Landing System (ILS) or Microwave Landing System (MLS), is possible by using a very cost effective system. The INLS is a high accuracy navigation and landing system designed to be used instead of conventional landing systems at small airfields and to fill operational gaps of conventional navigation and landing systems in cruise and approach on large airports  相似文献   

15.
Innovative field testing techniques are employed at Holloman Air Force Base to help the Global Positioning System (GPS) NAVSTAR Joint Program Office (JPO) test the Precision Lightweight GPS Receiver (PLGR). Characterizing the PLGR's accuracy in dynamic environments is of prime importance but testing also prescribes the evaluation of its ability to receive differential GPS corrections, real time, and its Electronic Counter Counter Measures. To meet these goals, the 46th Test Group provides the C-12 cargo aircraft for flight testing, an instrumented test van for mobile testing, the High Speed Test Track for high velocity testing, a UH-1 helicopter for rotor blade modulation testing, and special PC laptops for ground troop testing. All of these test capabilities utilize Holloman's well instrumented test environments with thousands of surveyed sites validated by the Defense Mapping Agency. This paper emphasizes the testing techniques that are helping to define Test & Evaluation methodologies for the changing world where Global Positioning with NAVSTAR is becoming a reality  相似文献   

16.
The Global Positioning System (GPS) has become the high tech utility of the 20th century. It was developed by the US Department of Defense as a precise navigation reference for the military services. Although the signal available to civilian users had been purposely degraded in what is called selective availability (SA), it is one of a few technological success stories that had positive unintended consequences. Recent announcements indicate that this SA impediment has been removed. GPS currently has a huge civilian market in commercial and private aviation, ship navigation, mapping and surveying, telecommunications position determination, and recreational boating and hiking. By 2003 sales of GPS based products are expected to be $16 billion  相似文献   

17.
This paper deals with the latest version of Experimental GNSS receiver built at the Czech Technical University and describes integration of GLONASS signal processing to the receiver. The new FPGA platform Virtex-D Pro by Xilinx is used and enables integration of whole digital signal processing of GNSS receiver into the single chip. The RE unit of the receiver is capable of processing all GLONASS frequency of the Li and L2 bands in two independent RE channels; each channel can process one band. The frequency selection of the appropriate satellite is accomplished in a digital correlator. The development flow of the GLONASS correlator is discussed herein. The complexity of the GLONASS correlator with complexity of GPS correlator is compared. The developed GLONASS correlator was tested in Simuelink tool during development. The next test was carried out using GLONASS simulator and real GLONASS satellite signal.  相似文献   

18.
研究了GPS和GLONASS在民用航空中的应用前景。分析了组合GPS和GLONASS所具备的可用性、精确性和完整性潜力。组合GPS/GLONASS在我国民航中具有重要的技术与战略意义。提出了一种集成12通道GPS/GLONASS接收机的结构与实现。射频前端部分采用3级变频将GPS和GLONASS信号变至中频并采样为同相与正交样本。数字处理部分对各样本加以积累与处理,解调卫星的导航电文。在导航解算中结合了WGS-84和PZ-90坐标系之间的转换。  相似文献   

19.
The Global Positioning System (GPS) Mission Planner (GMP) program, which has been implemented on an IBM PC, is described in terms of its features and architecture, and sample outputs are presented. The GMP was written to permit operational units to plan missions and to accomplish survivability and navigation assessments based on realistic trajectories, GPS almanac data, broadband jammer specifications, and digital terrain elevation data (DTED). GMP supports trajectory generation for generic air, land, or naval vehicles and has `sanity' checks for altitude acceleration, terrain slope, and velocity limits. A survivability measure is computed based on exposure time to various threat types. Yuma-type almanac data are used to support the GMP to define GPS satellite orbits. Jammers, threats, and trajectory wavepoints may be defined by either keyboard entry (e.g. longitude, latitude, and altitude) or via mouse and cursor on a displayed pseudo-color DTED map on the PC monitor. Satellite visibility and best dilution-of-precision (DOP) are computed using DTED. jammer visibility and power levels at the vehicle are similarly computed. A realistic body masking and antenna gain model is used to compute carrier-to-noise densities for each visible satellite. A navigation assessment program emulates a multichannel receiver to generate position and velocity measurement uncertainties. An integrated Kalman filter generates position and velocity navigation estimates. Results are graphically displayed to the operator  相似文献   

20.
在特殊环境下全球定位系统(GPS)信号强度被严重削弱,此时基于GPS技术的导航设备将受到严重影响。针对不依赖GPS的行人导航定位需求,提出了一种基于微机电捷联惯导系统(SINS)与超宽带(UWB)定位系统相结合的行人导航方法。该系统由捷联惯导系统与超宽带定位系统组成,行人导航算法在传统的捷联算法的基础上引入了零速修正技术用于检测零速时刻,并使用阈值法剔除了超宽带错误信息,通过联邦Kalman滤波融合了零速、位置和航向信息,并对系统速度、位置、航向进行了校正。行人导航实验表明,该方法能够提升系统定位精度,并进一步加强系统的稳定性与可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号