首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
GLONASS (Global Orbiting Navigation Satellite System) is the most recent satellite navigation system developed by the Soviet Union and currently in the pre-operational stage. Obvious parallels exist between GLONASS and the NAVSTAR Global Positioning System (GPS) developed in the United States and also, at present, in a pre-operational phase. In the progress towards operational status, the launch capability for NAVSTAR satellites has been seriously affected by the recent failure of the Space Shuttle Challenger, clearly increasing the prospects of GLONASS reaching operational status first. It is therefore the main purpose of this paper to discuss certain aspects of the GLONASS satellite navigation system, in particular its orbital features and radio-frequency signal characteristics. Comparisons with NAVSTAR are inevitable and for this reason, the paper begins with a brief resume of relevant features of the NAVSTAR GPS system for later reference. The main section of the paper then deals with orbital behaviour, radio frequency signal structure and channelisation using NAVSTAR as a reference point for discussion.  相似文献   

2.
近年来,卫星导航技术发展迅速.卫星导航系统以精密时间测量技术为基础,实现了伪距测量,进而实现定位.同时,卫星导航系统还提供了高精度授时功能.综述了卫星导航系统的授时和时间频率传递技术、基于通信卫星的授时技术以及双向卫星时间频率传递(TWSTFT)技术等.随着我国北斗卫星导航系统(BDS)的建成和提供服务,BDS授时应用研究正在快速发展.基于BDS/GNSS多系统的精密单点定位(PPP)时间传递技术已成为重点研究方向,未来将会应用于国际时间比对.同时,随着卫星通信技术尤其是低轨通信卫星技术的快速发展,低轨通信卫星授时会成为一个有潜力的研究方向.  相似文献   

3.
为了评估表示导航系统精度, 提出一种基于雷达图的综合评估表示方法, 包括速度、位置、姿态精度的评估表示。雷达图具有可视化的优点, 便于进行优劣分 析、综合评价,因此可以直观地将导航系统的精度表达出来。以捷联惯导系统和全球卫 星定位系统的组合导航系统精度对比分析为例进行研究,采用雷达图的方式取得了较好 的对比分析效果。将雷达图应用在组合导航系统的精度评估中,可简明直观地考核其精 度和性能,这为导航系统精度评估表示提供了一种有效的手段。  相似文献   

4.
The FAA's future aviation surveillance systems fall into four categories: Automatic Dependent Surveillance (ADS) will be used in the oceanic environment; ADS-Broadcast (ADS-B) will be used in the domestic en route environment; ADS-B will be used with a secondary radar backup in the terminal area; and ADS-B will be used with primary radar backup within the Airport Surface Traffic Automation (ASTA) system on the airport's surface environment. Two other systems introduced in this paper are Cockpit Display of Traffic Information (CDTI) and Traffic Advisory and Collision Avoidance System (TCAS). All these systems will use navigational signals emitted by the Global Positioning System (GPS) constellation of satellites  相似文献   

5.
Ground-based transmitters called pseudolites have been proposed to augment the basic Global Positioning System (GPS) in environments where satellite visibility is limited. One difficulty in their use is the so-called near-far problem, where in close proximity to the ground transmitter, the pseudolite signal can be orders of magnitude stronger than the satellite signals. This large range of signal levels prevents a conventional receiver from simultaneously detecting both types of signals. This paper describes the application of a signal processing technique, known as successive interference cancellation (SIC), to the acquisition and tracking of weak satellite signals in the presence of a nearby pseudolite and possible multipath reflections of this pseudolite signal. The SIC architecture is implemented on simulated and experimental near-far data sets. The results are compared with a conventional detector and improvements in acquisition and tracking performance are illustrated.  相似文献   

6.
There are a number of different error sources, such as multipath and thermal noise, which corrupt satellite navigation waveforms from their theoretical structure. However, even under ideal conditions the broadcast signals have some degree of deformation as a result of the practical individual hardware implementation. For the most demanding users of satellite navigation, such as aircraft navigation and landing systems, it is important to characterize the nominal signal structure in order to detect minimal variations resulting from hardware-based errors. Thus far such precorrelation Global Navigation Satellite System (GNSS) signal quality monitoring has been performed through high gain antennas, which allow for raising the GNSS spectrum above the thermal noise floor and observing the structure of the signal directly at the front end output. This paper describes a new approach to achieve such observability based on signal processing techniques, such as dithering and averaging, which leverage the repetitive nature of the GNSS signal. The paper presents how these techniques can drastically improve the signal-to-noise ratio (SNR) in postprocessing, allowing for the direct analysis of GNSS signals using traditional front end designs and conventional antennas. Results are predicted using the appropriate theory and validated using data collected from the Global Positioning System (GPS).  相似文献   

7.
Distributed synthetic aperture radar (DiSAR), including bi- and multistatic SAR, operates with distinct transmitting and receiving antennas that are mounted on separate platforms. Spatial separation has several operational advantages, such as reduced vulnerability in military applications and increased radar cross section (RCS); which may increase the capability, reliability, and flexibility of future aerospace remote sensing missions. However, in this configuration, there is no cancellation of reference oscillator phase noise as in monostatic cases. There are additional technical problems associated with temporal synchronization of the transmit and receive systems. Therefore, highly accurate time and phase synchronization must be provided. Little work on these challenges has been reported. This paper presents a Global Positioning System (GPS)-based technique for achieving successful time and phase synchronization for DiSAR. This technique offers high-frequency stability. More importantly, residual time synchronization errors may be compensated for with a high-precision range alignment method, and residual phase synchronization errors may be compensated for with a subaperture autofocus algorithm.  相似文献   

8.
《中国航空学报》2020,33(5):1505-1516
The Least Squares Residual (LSR) algorithm, one of the classical Receiver Autonomous Integrity Monitoring (RAIM) algorithms for Global Navigation Satellite System (GNSS), presents a high Missed Detection Risk (MDR) for a large-slope faulty satellite and a high False Alarm Risk (FAR) for a small-slope faulty satellite. From the theoretical analysis of the high MDR and FAR cause, the optimal slope is determined, and thereby the optimal test statistic for fault detection is conceived, which can minimize the FAR with the MDR not exceeding its allowable value. To construct a test statistic approximate to the optimal one, the Correlation-Weighted LSR (CW-LSR) algorithm is proposed. The CW-LSR test statistic remains the sum of pseudorange residual squares, but the square for the most potentially faulty satellite, judged by correlation analysis between the pseudorange residual and observation error, is weighted with an optimal-slope-based factor. It does not obey the same distribution but has the same non-central parameter with the optimal test statistic. The superior performance of the CW-LSR algorithm is verified via simulation, both reducing the FAR for a small-slope faulty satellite with the MDR not exceeding its allowable value and reducing the MDR for a large-slope faulty satellite at the expense of FAR addition.  相似文献   

9.
《中国航空学报》2021,34(9):1-10
The full constellation of Chinese Global Navigation Satellite System (GNSS) BeiDou-3 has been deployed completely and started fully operational service. In addition to providing global Positioning, Navigation and Timing (PNT) services, the BeiDou-3 satellites transmissions can also be used as the sources of illumination for Earth Observation (EO) with a bistatic radar configuration. This innovative EO concept, known as GNSS reflectometry (GNSS-R), allows to measure the Earth surface characteristics at high resolution via the reflected L-band radar signals collected by a constellation of small, low cost and low Earth orbiting satellites. For the first time in orbit, earth reflected BeiDou-3 signal has been detected from the limited sets of raw data collected by the NASA’s Cyclone GNSS (CYGNSS) constellation. The feasibility of spaceborne BeiDou-3 reflections on two typical applications, including sea surface wind and flooding inundation detection, has been demonstrated. The methodology and results give new strength to the prospect of new spaceborne GNSS-R instruments and missions, which can make multi-GNSS reflectometry observations available to better capture rapidly changing weather systems at better spatio-temporal scales.  相似文献   

10.
The Navstar Global Positioning System (GPS) Program is composed of three segments ? Space, Control, and User Equipment. The Space segment is responsible for the development and launch of the GPS satellite constellation. The Control segment is responsible for monitoring the satellite telemetry and providing updated navigation information to the satellites. The User Equipment (UE) segment is responsible for the development and procurement of the GPS receivers for a variety of host vehicle platforms. Recently, approval was given to the User segment to enter Low Rate Initial Production (LRIP). This approval marks the beginning of Phase III (production and deployment) of the GPS program. This paper will discuss the overall status of all three segments with an emphasis on the User Equipment segment as it enters the production phase of the program.  相似文献   

11.
The theory of operation, practical applications, and technical performance of a Global Positioning System (GPS) receiver designed for urban area use are presented. The receiver tracks as many as eight satellites, or all visible satellites, and uses the signals of the four best satellites to ascertain its location. If visibility of one satellite is blocked, one of the additional satellites can be used to provide continuous navigation. Component-level system design choices are shown to support superior automotive vehicle location performance, including optimum mobile communication with satellites and ground-based relays  相似文献   

12.
In the four satellite Global Positioning System (GPS) problem, the system of pseudo-range equations is shown to be equivalent to a system of two linear equations together with a range difference and pseudo-range equation. The formulation represents the user's position as the intersection of two planes and a hyperbola branch of revolution. The formulation is three-dimensional and includes almost all degenerate and special case geometries. It provides geometric insight into the characteristics of the solutions and resolves existence and uniqueness questions regarding solution of the pseudo-range equations  相似文献   

13.
The complexity of the design of a Global Positioning System (GPS) user segment, as well as the performance demanded of the components, depends on user requirements such as total navigation accuracy. Other factors, for instance the expected satellite/vehicle geometry or the accuracy of an accompanying inertial navigation system can also affect the user segment design. Models of GPS measurements are used to predict user segment performance at various levels. Design curves are developed which illustrate the relationship between user requirements, the user segment design, and component performance  相似文献   

14.
中继卫星在跟踪自主机动用户目标时,由于机动轨道未知,需要利用中继卫星下传的星载GNSS(Global Navigations Satellite System,全球导航卫星系统)数据进行实时轨道确定与预报,为中继卫星跟踪提供实时的引导信息,以方便中继卫星快速捕获目标和连续稳定跟踪。针对该类用户目标的任务需求,讨论了基于星载GNSS数据自主机动条件下的实时定轨方法,建立了连续推力机动力学模型。以某一型号卫星的实测数据进行分析验证,并对轨道机动进行辨识,计算的机动加速度和机动时间与试验单位提供的结果一致。针对卫星不同机动情况,5min的观测数据定轨预报10min的弧段,最大位置误差小于8km,可以为中继卫星快速捕获提供高精度的引导信息。  相似文献   

15.
The many advantages of Global Positioning System (GPS) based navigation have created a tremendous amount of interest in using GPS as the primary navigation aid onboard commercial and civil aircraft. Even in the presence of Selective Availability, the accuracy of GPS is sufficient to guide aircraft point-to-point between airports without requiring other navigation aids such as VOR or DME. Unfortunately, there is a finite probability that a GPS satellite will fail, causing the transmission of potentially misleading navigation information. Thus, before GPS can be widely adopted as a navigation aid, techniques must be devised to detect any possible failures and notify the user prior to the degradation of navigation accuracy. This paper discusses the problem of detecting possible GPS satellite failures using a technique called Receiver Autonomous Integrity Monitoring (RAIM)  相似文献   

16.
An electrical power system for a space-based radar satellite is described. When the radar is on, its transmitter needs an average DC power of 30 kW. The problem of distributing the power efficiently in pulses to many transmit/receive modules is addressed. System requirements include a high-voltage battery and transmission line, load-sharing between the solar array, and the battery during sunlit periods, and a 25-kW solar array. A scaled-down version of the power system for a proof-of-concept demonstration is described  相似文献   

17.
The concept of radar satellite constellations, or clusters, for synthetic aperture radar (SAR), moving target indicator (MTI), and other radar modes has been proposed and is currently under research. These constellations form an array that is sparsely populated and irregularly spaced; therefore, traditional matched filtering is inadequate for dealing with the constellation's radiation pattern. To aid in the design, analysis, and signal processing of radar satellite constellations and sparse arrays in general, the characterization of the resolution and ambiguity functions of such systems is investigated. We project the radar's received phase history versus five sensor parameters: time, frequency, and three-dimensional position, into a phase history in terms of two eigensensors that can be interpreted as the dimensions of a two-dimensional synthetic aperture. Then, the synthetic aperture expression is used to derive resolution and the ambiguity function. Simulations are presented to verify the theory.  相似文献   

18.
The transmission of integrity information using a signal format compatible with the Global Positioning System (GPS) and relayed through a geostationary satellite repeater, which will be critical in achieving high integrity and availability of global navigation by satellite is discussed. The inclusion of navigation repeaters designed to fulfil this function, the next generation of INMARSAT spacecraft, INMARSAT-3 is examined. The global navigation satellite system (GNSS) integrity channel (GIC) will employ pseudorandom codes in the same family as, but distinct from, the codes reserved by GPS. The data format of the basic integrity channel is designed to convey user range error information for 24 to 40 satellites. A closed-loop timing compensation technique will be used at the uplinking Earth station, to make the signal's clock and carrier Doppler variations identical to those that would result from an onboard signal source. Therefore, the INMARSAT-3 satellites will increase the number of useful navigation satellites available to any user, and can also function as sources of precise timing. There is also a possibility that wide area differential corrections can be carried on the same signal  相似文献   

19.
The Global Positioning System (GPS) is a satellite navigation system capable of providing 15-m position accuracy. Its system time reference is currently one of the monitor station clocks. Using a simple two-clock example, it is shown analytically that improved reference time stability and overall state estimation accuracy can be achieved by constructing GPS time as an ensemble of all system clocks and that the problem of covariance divergence can be handled by the introduction of pseudomeasurement processing  相似文献   

20.
The radio frequency (RF) susceptibility characteristics of two commercial Global Positioning System (GPS) receivers were evaluated. A first-order analysis was performed to predict the receiver susceptibility thresholds based on the receiver sensitivity and processing gain. The receiver susceptibility thresholds in the post-acquisition mode were then measured for various interference signal frequencies and modulations. Both receivers exhibited very low susceptibility thresholds to in-band continuous wave (CW) signals. In addition, both receivers could be over-driven with an out-of-band signal. In this state the receivers indicated acceptable figures of merit despite loss of satellite signal lock  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号