首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
超声ELID 复合磨削磨削力模型研究   总被引:1,自引:1,他引:0       下载免费PDF全文
以ELID 电解原理为基础,结合超声振动辅助磨削过程中单颗磨粒的运动学分析,建立了超声 ELID 复合磨削条件下的磨削力数学解析模型,并对模型进行了分析和仿真。对模型的分析表明:超声振动改 变了磨粒的运动轨迹,使同等条件下的未变形切屑厚度减小,砂轮的在线电解修整使磨粒始终处于锋锐状态, 而且影响砂轮的实际切削深度,进而对磨削力产生影响。磨削力随着超声振动频率、振幅、电解电压、脉冲比、 电解液电阻率的增大而减小;随着切削深度、工件速度的增大而增大。  相似文献   

2.
镍基高温合金是航空发动机部件的常用材料,其磨削加工存在工具损耗严重、寿命短等难题。针对3种新研制的刚玉砂轮(分别为粒度60#的微晶和单晶混合磨料砂轮、粒度60#的单晶刚玉砂轮,以及粒度70#的单晶刚玉砂轮),开展了GH4169镍基高温合金材料的磨削试验,从磨削力、磨削温度、砂轮磨损以及表面粗糙度等方面对3种砂轮的磨削性能进行了评价。结果表明,3种砂轮磨削GH4169材料在砂轮磨损和表面粗糙度方面未表现出明显差异,而通过对磨削力和磨削温度的综合评价发现粒度60#的单晶刚玉砂轮的磨削性能更优。3种砂轮磨削GH4169材料的磨削比在0.5~3之间。在正常磨削条件下,3种砂轮的磨削表面粗糙度Ra小于0.4μm。同时发现,砂轮磨损(主要包括磨粒的破碎和脱落)是造成磨削表面缺陷形成的重要原因。  相似文献   

3.
Too high grinding force will lead to a large increase in specific grinding energy, resulting in high temperature in grinding zone, especially for the aerospace difficult cutting metal materials,seriously affecting the surface quality and accuracy. At present, the theoretical models of grinding force are mostly based on the assumption of uniform or simplified morphological characteristics of grains, which is inconsistent with the actual grains. Especially for non-engineering grinding wheel,most g...  相似文献   

4.
Particle-reinforcing titanium matrix composites(PTMCs) exhibit the sharp raising applications in modern industries owing to its extraordinary physical and mechanical properties. However, the poor grindability and unstable grinding processes due to the existence of TiC particles and TiB short fibres inside PTMCs, leading to the sudden grinding burn and low material removal rate.In this work, a novel radial ultrasonic vibration-assisted grinding(RUVAG) device with a special cross structure was dev...  相似文献   

5.
《中国航空学报》2022,35(12):278-286
Nickel-based alloy has been widely used due to its outstanding mechanical properties. However, Nickel-based alloy is a typical difficult-to-machine material, which is a great constrain for its application in the manufacturing field. To improve the surface quality of the ground workpiece, a new high-shear and low-pressure grinding wheel, with high ratio of tangential grinding force to normal grinding force, was fabricated for the grinding of selective laser melting (SLM) manufactured Inconel718 alloy. The principle of high-shear and low-pressure grinding process was introduced in detail, which was quite different from the conventional grinding process. The fabrication process of the new grinding wheel was illustrated. A serial of experiments with different processing parameters were carried out to investigate the grinding performance of the developed grinding wheel via analyzing surface roughness and surface morphology of the ground workpiece. The optimal processing parameters of high-shear and low-pressure grinding were obtained. The surface roughness of ground workpiece was reduced to 0.232 μm from the initial value of 0.490 μm under the optimal grinding conditions. It was found that the initial scratches on the ground workpiece were almost completely removed after the observations with the metalloscopy and the field-emission scanning electron microscopy (FE-SEM). The capability of the newly developed high-shear and low-pressure grinding wheel was validated.  相似文献   

6.
《中国航空学报》2023,36(6):446-459
Cubic boron nitride (cBN) superabrasive grinding wheels exhibit unique advantages in the grinding of difficult-to-cut materials with high strength and toughness, such as titanium alloys and superalloys. However, grinding with multilayered metallic cBN superabrasive wheels faces problems in terms of grain wear resistance, the chip storage capability of the working layers and the stability and controllability of the dressing process. Therefore, in this work, novel metallic cBN superabrasive wheels with aggregated cBN (AcBN) grains and open pore structures were fabricated to improve machining efficiency and surface quality. Prior to the grinding trials, the air-borne abrasive blasting process was conducted and the abrasive blasting parameters were optimized in view of wear properties of cBN grains and metallic matrix materials. Subsequently, the comparative experiments were performed and then the variations in grinding force and force ratio, grinding temperature, tool wear morphology and ground surface quality of the multilayered AcBN grinding wheels were investigated during machining Ti–6Al–4V alloys. In consideration of the variations of grain erosion wear volume and material removal rate per unit of pure metallic matrix materials as the abrasive blasting parameters changes, the optimal abrasive blasting parameters were identified as the SiC abrasive mesh size of 60# and the abrasive blasting distance and time of 60 mm and 15 s, respectively. The as-developed AcBN grains exhibited better fracture toughness and impact resistance than monocrystalline cBN (McBN) grains because of the existence of metal-bonded materials amongst multiple cBN particles that decreased crack propagation inside whole grains. The metallic porous AcBN wheels had lower grinding forces and temperature and better ground surface quality than vitrified McBN wheels due to the constant layer-by-layer exposure of cBN particles in the working layer of AcBN wheels.  相似文献   

7.
《中国航空学报》2023,36(7):25-39
Grinding is one of the most widely used material removal methods at the end of many process chains. Grinding force is related to almost all grinding parameters, which has a great influence on material removal rate, dimensional and shape accuracy, surface and subsurface integrity, thermodynamics, dynamics, wheel durability, and machining system deformation. Considering that grinding force is related to almost all grinding parameters, grinding force can be used to detect grinding wheel wear, energy calculation, chatter suppression, force control and grinding process simulation. Accurate prediction of grinding forces is important for optimizing grinding parameters and the structure of grinding machines and fixtures. Although there are substantial research papers on grinding mechanics, a comprehensive review on the modeling of grinding mechanics is still absent from the literature. To fill this gap, this work reviews and introduces theoretical methods and applications of mechanics in grinding from the aspects of modeling principles, limitations and possible future trendencies.  相似文献   

8.
磨粒建模方法与切削过程仿真研究   总被引:1,自引:0,他引:1  
宿崇  许立  李明高  马纪军 《航空学报》2012,33(11):2130-2135
针对砂轮表面上磨粒形状不规则、尺寸不确定的几何特征,研究了模拟实际磨粒的几何建模方法。采用随机空间平面切分正六面体的方法构建了具有实际磨粒几何特征的不规则多面体结构磨粒。基于LS-DYNA软件,采用流固耦合有限元法模拟了不规则多面体结构磨粒的切削过程。分析切削过程中工件材料的应力分布规律与切削变形规律,得出结论:工件材料的加工应力主要集中在与磨粒切削刃及棱角接触的区域;切屑沿磨粒挤压前面向上流动,并于挤压面法向方向上流出;磨粒挤压前角的增大有利于切屑的形成。利用陶瓷立方氮化硼(CBN)砂块进行了磨粒划擦试验,试验结果证实了磨粒切削仿真结果的准确性。  相似文献   

9.
砂带磨粒磨损直接影响磨削表面质量进而影响构件综合服役性能.以表面完整性为评估指标,对砂带磨损前后钛合金的表面加工质量进行了试验研究,揭示了砂带磨粒磨损对磨削TC17表面粗糙度、残余应力和表面硬度的影响规律及机制.结果表明,磨粒磨损后由于高度均匀化、单位面积切削磨粒数增加、磨削深度减小,使得表面粗糙度减小、纹理均匀细腻,...  相似文献   

10.
本文以磨削钛合金的粘附现象为基础,分析了磨削力与粘附面积百分率间的关系,并导出了磨削力数学模型。该模型计及由于切削工件材料而产生的力以及由于粘到工作磨粒上的工件材料与工件相互接触而产生的力。试验结果证明该模型对钛合金磨削是适用的。  相似文献   

11.
单颗磨粒磨削仿真研究进展   总被引:2,自引:2,他引:0       下载免费PDF全文
概述了传统磨削仿真的基本方法及发展过程,总结了磨粒模型和工件模型的研究现状,具体分析了有限元法、光滑流体粒子动力学法、分子动力学法以及综合仿真方法等应用于单颗磨粒磨削材料的去除机理、成屑机理、工件表面质量以及磨粒磨损等仿真中的研究现状,最后阐述了各类仿真方法的局限性,并提出了单颗磨粒磨削仿真进一步的发展前景。  相似文献   

12.
《中国航空学报》2021,34(4):192-207
As for ultra-precision grinding of difficult-to-process thin-walled complex components with ball-end grinding wheels, interference is easy to occur. According to screw theory and grinding kinematics, a mathematical model is established to investigate the interference and grinding characteristics of the ball-end wheel. The relationship between grinding wheel inclination angle, C axis rotation angle, grinding position angle and grinding wheel wear are analyzed. As the grinding wheel inclination angle increases, the C axis rotatable range decreases and the grinding position angle increases. The grinding position angle and wheel radius wear show a negative correlation with the C axis rotation angle. Therefore, a trajectory planning criteria for increasing grinding speed as much as possible under the premise of avoiding interference is proposed to design the grinding trajectory. Then grinding point distribution on the ball-end wheel is calculated, and the grinding characteristics, grinding speed and maximum undeformed chip thickness, are investigated. Finally, a complex structural component can be ground without interference, and surface roughness and profile accuracy are improved to 40.2 nm and 0.399 μm, compared with 556 nm and 3.427 μm before ultra-precision grinding. The mathematical model can provide theoretical guidance for the analysis of interference and grinding characteristics in complex components grinding to improve its grinding quality.  相似文献   

13.
The ultrahigh strength 300M steel has been commonly used in the manufacture of aircraft landing gear and rotor shaft parts due to its excellent mechanical properties. Creep feed grinding is one of the essential operations during the whole component manufacturing processes. In this work, the feasibility of creep feed grinding of 300M steel by using the hard zirconium corundum wheel was theoretically and experimentally evaluated. A variety of responses including grinding forces, temperature fields...  相似文献   

14.
For high-efficiency grinding of difficult-to-cut materials such as titanium and nickel alloys, a high porosity is expected and also a sufficient mechanical strength to satisfy the function.However, the porosity increase is a disadvantage to the mechanical strength. As a promising pore forming agent, alumina bubbles are firstly induced into the abrasive layer to fabricate porous cubic boron nitride(CBN) wheels. When the wheel porosity reaches 45%, the bending strength is still high up to 50 MPa with modified orderly pore distribution. A porous CBN wheel was fabricated with a total porosity around 30%. The grinding performance of the porous composite-bonded CBN wheel was evaluated in terms of specific force, specific grinding energy, and grinding temperature, which were better than those of the vitrified one under the same grinding conditions. Compared to the vitrified CBN wheel, clear straight cutting grooves and less chip adhesion are observed on the ground surface and there is also no extensive loading on the wheel surface after grinding.  相似文献   

15.
磨削一般是零件加工的最后一道工序。磨削过程较为复杂,磨削力的大小不仅影响工件的表面质量,而且还影响零件的精度。在磨削机理研究及生产实际中常常需对磨削力进行测试,通过调整磨削用量,修整砂轮,实现在允许的磨削力范围内进行加工。提出了在磨床上安装测力系统,并采用单片机对磨削力信号进行实时采集处理,建立磨削力的经验公式,同时显示并打印结果。  相似文献   

16.
《中国航空学报》2021,34(4):132-139
Profiled monolayer cBN wheel was induction brazed for grinding of titanium dovetail slot in this study. Aimed at acquiring a uniform temperature distribution along the profiled surface and reducing the thermal deformation of the brazed wheel, a finite element model was established to investigate the temperature uniformity during induction brazing. A suitable induction coil and the related working parameters were designed and chosen based on the simulation results. Ag-Cu-Ti alloy and cBN grains were applied in the induction brazing experiment. The results showed geometric deformation of the brazed wheel was no more than 0.01 mm and chemical reaction layer were found on the brazed joint interface. Further validation tests were carried out by grinding of Ti-6Al-4V alloy. Compared to the electroplated wheel, the brazed wheel showed better performance such as low specific grinding energy and good ground quality in grinding of Ti-6Al-4V alloy. Abrasion wear was found to be the main failure mode for the induction brazed wheel, while adhesion and grains pull-out were the main failure mode for the electroplated wheel.  相似文献   

17.
《中国航空学报》2021,34(5):404-414
Fiber-reinforced silica ceramic matrix composites (SiO2f/SiO2) have gained extensive attention in recent years for its applications in aeronautics field such as radar radome and window. However, the machining properties and mechanism of the material remain unclear. The features and mechanical properties of the material itself have a significant influence on both its machining characteristics and surface integrity. Thus, a full-factor grinding experiment is conducted using a 3D orthogonal SiO2f/SiO2 aiming to obtain its machining characteristics. The effects of grinding parameters and tools on the grinding force, surface roughness, and material damage type are investigated using a dynamometer, Scanning Electron Microscope (SEM), and Acoustic Emission (AE) analysis. The AE frequency band is analyzed, and a semi-analytical force model is established to study the difference between a single grain and wheel grinding. It was found that the changes in surface roughness correlate with the changes in grinding force, with fiber fracture being the main reason behind the increase in grinding force. Finally, the material removal mechanism was studied based on the AE analysis. It was found that the removal mechanism is fiber fracture dominated with matrix crack and debonding, and the primary sources of energy consumption are fiber fracture and friction.  相似文献   

18.
K444 nickel-based superalloy is an important material to manufacture the gas turbine due to its excellent mechanical properties at high temperatures and corrosion resistance. Currently,grinding is the mostly used method for the surface finish of the K444 alloy components. However,few studies worked on the effects of the abrasive tool wear on the ground surface characteristics and corrosion properties of K444 alloy. This study uses two different-type alumina abrasive tools, i.e.,white alumina(WA)...  相似文献   

19.
《中国航空学报》2021,34(6):125-140
Ultrasonic vibration-assisted ELID (UVA-ELID) grinding is utilized as a novel and highly efficient processing method for hard and brittle materials such as ceramics. In this study, the UVA-ELID grinding ZTA ceramics is employed to investigate the influence of thermomechanical loading on the characteristics of oxide film. Based on the fracture mechanics of material, the model of internal stress for oxide film damage is proposed. The thermomechanical loading is composed of mechanical force and the thermal stress generating from grinding temperature. The theoretical model is established for the mechanical force, thermal stress and internal stress respectively. Then the finite element analysis method is used to simulate the theoretical model. The mechanical force and grinding temperature is measured during the actual grinding test. During the grinding process, the effect of grinding wheel speed and grinding depth on the thermomechanical force and the characteristics of oxide film is analyzed. Compared with the conventional ELID (C-ELID) grinding, the mechanical force decreased by 25.6% and 22.4% with the increase of grinding wheel speed and grinding depth respectively, and the grinding temperature declined by 10.7% and 12.8% during the UVA-ELID grinding. The thermal stress in the latter decreased by 16.3% and 20.8% respectively, and internal stress reduced by 12.3% and 15.6%. It was experimentally found that the topographies of oxide layer on the surface of the wheel and the machined surface in the latter was better than that in the former. The results indicate that the action of ultrasonic vibration establish a significant effect on the processing. Subsequently, it should be well considered for future reference when processing the ZTA ceramics.  相似文献   

20.
针对金刚石砂轮磨粒尺寸、形状的不规则性和空间位置不确定性的特点,采用球坐标中随机点产生的空间平面切分实体和截角多面体相结合的方法,并考虑氮化硅陶瓷工件的磨削亚表面形貌和裂纹损伤,建立了截角多面体磨粒和含有典型裂纹的工件模型。进行单颗磨粒切削氮化硅陶瓷的有限元仿真和实验,结果表明:磨削加工和数值仿真的磨削力值变化趋势相同,差值小于8%,切削力随砂轮转速增大而减小、随工件速度和切削深度增大而增大,而切削深度对切削力的影响程度最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号