首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国航空学报》2016,(5):1414-1424
In order to develop the high-efficiency and precision machining technique of Ti Cp/Ti–6Al–4V particulate reinforced titanium matrix composites(PTMCs), high-speed grinding experiments were conducted using the single-layer electroplated cubic boron nitride(CBN) wheel and brazed CBN wheel, respectively. The comparative grinding performance was studied in terms of grinding force, grinding temperature, grinding-induced surface features and defects. The results display that the grinding forces and grinding temperature obtained with the brazed CBN wheel are always lower than those with the electroplated CBN wheel. Though the voids and microcracks are the dominant grinding-induced surface defects, the brazed CBN wheel produces less surface defects compared to the electroplated wheel according to the statistical analysis results. The maximum materials removal rate with the brazed CBN wheel is much higher than that with the electroplated one. All above indicate that the single-layer brazed CBN super-abrasive wheel is more suitable for high-speed grinding of PTMCs than the electroplated counterpart.  相似文献   

2.
(TiCp+ TiBw)/Ti-6Al-4V titanium matrix composites(PTMCs) have broad application prospects in the aviation and nuclear field. However, it is a typical difficult-to-cut material due to high hardness of the reinforcements, high strength and low thermal conductivity of Ti-6Al-4V alloy matrix. Grinding experiments with vitrified CBN wheels were conducted to analyze comparatively the grinding performance of PTMCs and Ti-6Al-4V alloy. Grinding force and force ratios, specific grinding energy, grinding temperature, surface roughness, ground surface appearance were discussed. The results show that the normal grinding force and the force ratios of PTMCs are much larger than that of Ti-6Al-4V alloy. Low depth of cut and high workpiece speed are generally beneficial to achieve the precision ground surface for PTMCs. The hard reinforcements of PTMCs are mainly removed in the ductile mode during grinding. However, the removal phenomenon of the reinforcements due to brittle fracture still exists, which contributes to the lower specific grinding energy and grinding temperature of PTMCs than Ti-6Al-4V alloy.  相似文献   

3.
The technique of creep feed grinding is most suitable for geometrical shaping, and therefore has been expected to improve effectively material removal rate and surface quality of components with complex profile. This article studies experimentally the effects of process parameters (i.e. wheel speed, workpiece speed and depth of cut) on the grindability and surface integrity of cast nickel-based superalloys, i.e. K424, during creep feed grinding with brazed cubic boron nitride (CBN) abrasive wheels. Some important factors, such as grinding force and temperature, specific grinding energy, size stability, surface topography, microhardness and microstructure alteration of the sub-surface, residual stresses, are investigated in detail. The results show that during creep feed grinding with brazed CBN wheels, low grinding temperature at about 100 °C is obtained though the specific grinding energy of nickel-based superalloys is high up to 200-300 J/mm3. A combination of wheel speed 22.5 m/s, workpiece speed 0.1 m/min, depth of cut 0.2 mm accomplishes the straight grooves with the expected dimensional accuracy. Moreover, the compressive residual stresses are formed in the burn-free and crack-free ground surface.  相似文献   

4.
原位自生TiB_2/Al复合材料具有密度小,比强度高,比模量大等特点,在航空航天领域具有广泛的应用前景。为探索原位自生TiB_2/Al复合材料的磨削加工性能,选用单晶刚玉SA砂轮、白刚玉WA砂轮和CBN砂轮在不同磨削参数下对TiB_2/Al复合材料进行磨削试验。首先研究了砂轮材质、转速、工件速度、磨削深度对工件表面粗糙度的影响规律;其次通过对工件表面形貌、磨屑形态、砂轮磨损的观测分析,探索了原位自生TiB_2/Al复合材料磨削表面成形机制;最后基于试验数据,给出了TiB_2/Al复合材料磨削工艺参数优选域。本研究可为颗粒增强金属基复合材料磨削加工提供基础理论支撑。  相似文献   

5.
A state-of-the-art review on monolayer electroplated and brazed cubic boron nitride (CBN) superabrasive wheels for grinding metallic materials has been provided in this article. The fabrication techniques and mechanisms of the monolayer CBN wheels are discussed. Grain distri-bution, wheel dressing, wear behavior, and wheel performance are analyzed in detail. Sample appli-cations of monolayer CBN wheel for grinding steels, titanium alloys, and nickel-based superalloys are also provided. Finally, this article highlights opportunities for further investigation of mono-layer CBN grinding wheels.  相似文献   

6.
Too high grinding force will lead to a large increase in specific grinding energy, resulting in high temperature in grinding zone, especially for the aerospace difficult cutting metal materials,seriously affecting the surface quality and accuracy. At present, the theoretical models of grinding force are mostly based on the assumption of uniform or simplified morphological characteristics of grains, which is inconsistent with the actual grains. Especially for non-engineering grinding wheel,most g...  相似文献   

7.
针对钛合金风扇叶片磨抛加工中砂轮易磨损、工件表面易烧伤的问题,开展了钛合金材料磨抛加工性试验研究,主要考察砂轮选型、磨抛工艺参数等关键因素对钛合金材料磨抛加工性的影响,并对试验结果进行了分析研究。试验结果表明,在保证工件表面加工质量(R_a0.8μm,表面无烧伤)的前提下,普通磨料砂轮GC46L10V磨抛加工钛合金的材料去除率和磨抛比分别可达5000mm~3/min和2.5,超硬磨料陶瓷结合剂CBN砂轮磨抛加工钛合金的材料去除率和磨抛比分别可达2000mm~3/min和4。基于研究结果,针对钛合金风扇叶片开展了砂带磨抛加工验证试验,工件加工质量良好。  相似文献   

8.
电镀立方氮化硼砂轮在高精度、低表面粗糙度值的超深小孔磨削中,可大幅提高砂轮轴刚性,从而提高加工质量和生产效率。  相似文献   

9.
为了改善磨削后镍基高温合金GH4169的表面完整性,本文采用磁流变弹性体砂轮对镍基高温合金GH4169进行抛光试验研究。首先,通过模压成型的方法制备了磁流变弹性体砂轮,并对其表面微观形貌及不同磁场强度下的硬度进行了表征。其次将制备出的磁流变弹性体砂轮用于对镍基高温合金GH4169的抛光工艺试验中,并讨论抛光工艺参数中磁场强度对镍基高温合金表面完整性的影响。试验结果表明:在一定的磁场强度范围内,零件抛光后的表面粗糙度和显微硬度随着磁场强度的增大而减小,同时增大磁场强度也有利于改善零件的表面形貌,减少砂轮的磨损量,降低零件磨削后的亚表面损伤层厚度。  相似文献   

10.
The ultrahigh strength 300M steel has been commonly used in the manufacture of aircraft landing gear and rotor shaft parts due to its excellent mechanical properties. Creep feed grinding is one of the essential operations during the whole component manufacturing processes. In this work, the feasibility of creep feed grinding of 300M steel by using the hard zirconium corundum wheel was theoretically and experimentally evaluated. A variety of responses including grinding forces, temperature fields...  相似文献   

11.
断续 CBN 砂轮缓进给磨削 K417 航空叶片材料的研究   总被引:5,自引:0,他引:5  
徐西鹏  黄辉  徐鸿钧 《航空学报》1997,18(3):316-323
 全面比较了用Al2O3和CBN磨削K417铸造高温合金时的磨削效果,指出:Al2O3不适于高效磨削K417之类的航空难加工材料,而CBN是实现该材料高效深切磨削的有效工具。通过大量实验,验证了断续CBN砂轮缓进给磨削K417时的技术优势,解决了树脂结合剂应用于断续磨削时所遇到的新问题。分析显示出该技术具有很好的应用前景和极大的推广价值。  相似文献   

12.
《中国航空学报》2021,34(4):132-139
Profiled monolayer cBN wheel was induction brazed for grinding of titanium dovetail slot in this study. Aimed at acquiring a uniform temperature distribution along the profiled surface and reducing the thermal deformation of the brazed wheel, a finite element model was established to investigate the temperature uniformity during induction brazing. A suitable induction coil and the related working parameters were designed and chosen based on the simulation results. Ag-Cu-Ti alloy and cBN grains were applied in the induction brazing experiment. The results showed geometric deformation of the brazed wheel was no more than 0.01 mm and chemical reaction layer were found on the brazed joint interface. Further validation tests were carried out by grinding of Ti-6Al-4V alloy. Compared to the electroplated wheel, the brazed wheel showed better performance such as low specific grinding energy and good ground quality in grinding of Ti-6Al-4V alloy. Abrasion wear was found to be the main failure mode for the induction brazed wheel, while adhesion and grains pull-out were the main failure mode for the electroplated wheel.  相似文献   

13.
航发涡轮叶片气膜孔的磨削加工实验   总被引:1,自引:1,他引:0  
针对目前航空发动机涡轮叶片气膜孔加工精度低和重熔层难去除的问题,提出了"电火花打孔、磨削扩孔"的新型气膜孔加工工艺,研制出小孔磨削专用微细CBN砂轮并对电火花气膜孔进行了磨削工艺实验。实验结果表明:经磨削加工后气膜孔圆度降低50.9%,孔径尺寸标准差降低90.7%,表面粗糙度降低65.9%,重熔层被全部去除,证明了航发涡轮叶片气膜孔磨削加工的可行性。  相似文献   

14.
《中国航空学报》2021,34(8):65-74
In this article, a grinding force model, which is on the basis of cutting process of single abrasive grains combined with the method of theoretical derivation and empirical formula by analyzing the formation mechanism of grinding force, was established. Three key factors have been taken into accounts in this model, such as the contact friction force between abrasive grains and materials, the plastic deformation of material in the process of abrasive plowing, and the shear strain effect of material during the process of cutting chips formation. The model was finally validated by the orthogonal grinding experiment of powder metallurgy nickel-based superalloy FGH96 by using the electroplated CBN abrasive wheel. Grinding force values of prediction and experiment were in good consistency. The errors of tangential grinding force and normal grinding force were 9.8% and 13.6%, respectively. The contributions of sliding force, plowing force and chip formation force were also analyzed. In addition, the tangential forces of sliding, plowing and chip formation are 14%, 19% and 11% of the normal forces on average, respectively. The pro-posed grinding force model is not only in favor of optimizing the grinding parameters and improving grinding efficiency, but also contributes to study some other grinding subjects (e.g. abrasive wheel wear, grinding heat, residual stress).  相似文献   

15.
《中国航空学报》2021,34(6):125-140
Ultrasonic vibration-assisted ELID (UVA-ELID) grinding is utilized as a novel and highly efficient processing method for hard and brittle materials such as ceramics. In this study, the UVA-ELID grinding ZTA ceramics is employed to investigate the influence of thermomechanical loading on the characteristics of oxide film. Based on the fracture mechanics of material, the model of internal stress for oxide film damage is proposed. The thermomechanical loading is composed of mechanical force and the thermal stress generating from grinding temperature. The theoretical model is established for the mechanical force, thermal stress and internal stress respectively. Then the finite element analysis method is used to simulate the theoretical model. The mechanical force and grinding temperature is measured during the actual grinding test. During the grinding process, the effect of grinding wheel speed and grinding depth on the thermomechanical force and the characteristics of oxide film is analyzed. Compared with the conventional ELID (C-ELID) grinding, the mechanical force decreased by 25.6% and 22.4% with the increase of grinding wheel speed and grinding depth respectively, and the grinding temperature declined by 10.7% and 12.8% during the UVA-ELID grinding. The thermal stress in the latter decreased by 16.3% and 20.8% respectively, and internal stress reduced by 12.3% and 15.6%. It was experimentally found that the topographies of oxide layer on the surface of the wheel and the machined surface in the latter was better than that in the former. The results indicate that the action of ultrasonic vibration establish a significant effect on the processing. Subsequently, it should be well considered for future reference when processing the ZTA ceramics.  相似文献   

16.
《中国航空学报》2021,34(6):100-109
This paper evaluates the performance of creep feed grinding γ-TiAl intermetallic (Ti-45Al-2Mn-2Nb) using electroplated diamond wheels. Firstly, a comparative analysis with the grinding results by using electroplated CBN wheels was conducted, mainly involving abrasive wheel wear behavior and maximum material removal rate below surface burn limit. It was found that the diamond wheel would produce much better grinding results including lower wheel wear rate and higher maximum material removal rate. Then the surface integrity obtained at different level of material removal rate was characterized with the utilization of the diamond wheel. The poor ductility of this γ-TiAl intermetallic material was found to have a marginal effect on the surface integrity, as no severe surface defects such as material pullout were generated during the stable wheel wear stage. For the involved operating parameters, a deformation layer was produced with ∼10 μm or more in thickness depending on the material removal rate used. Meanwhile, a work-hardened layer extending to more than 100 μm was produced with a maximum microhardness of above 520 HV0.05 (bulk value 360 HV0.05). The residual stress remained compressive, with a value of above −100 MPa and even up to −500 MPa for an elevated material removal rate. Shearing chip was the main chip type, indicating good wheel sharpness in the grinding process.  相似文献   

17.
氧化钇稳定氧化锆多孔陶瓷的制备与性能   总被引:1,自引:0,他引:1       下载免费PDF全文
以叔丁醇为溶剂,采用凝胶注模成型方法,制备出防/隔热的摩尔分数为8%Y_2O_3-ZrO_2(8YSZ)多孔陶瓷.在浆料中初始固相含量固定为10%体积分数的基础上,研究了烧结温度对8ySZ陶瓷材料的气孔率、开气孔率、孔径尺寸分布及显微结构的影响,分析了压缩强度、热导率与结构之间的关系.通过改变烧结温度,所制备的8YSZ多孔陶瓷的气孔率为65%~74%,孔隙分布均匀,平均孔径为0.68~1.82μm,压缩强度为7.92~13.15 MPa,室温热导率[最低可达0.053 W/(m·K)],比相应的致密陶瓷[~2.2 W/(m·K)]低一个数量级,且随着气孔率的增加而降低.  相似文献   

18.
《中国航空学报》2023,36(6):446-459
Cubic boron nitride (cBN) superabrasive grinding wheels exhibit unique advantages in the grinding of difficult-to-cut materials with high strength and toughness, such as titanium alloys and superalloys. However, grinding with multilayered metallic cBN superabrasive wheels faces problems in terms of grain wear resistance, the chip storage capability of the working layers and the stability and controllability of the dressing process. Therefore, in this work, novel metallic cBN superabrasive wheels with aggregated cBN (AcBN) grains and open pore structures were fabricated to improve machining efficiency and surface quality. Prior to the grinding trials, the air-borne abrasive blasting process was conducted and the abrasive blasting parameters were optimized in view of wear properties of cBN grains and metallic matrix materials. Subsequently, the comparative experiments were performed and then the variations in grinding force and force ratio, grinding temperature, tool wear morphology and ground surface quality of the multilayered AcBN grinding wheels were investigated during machining Ti–6Al–4V alloys. In consideration of the variations of grain erosion wear volume and material removal rate per unit of pure metallic matrix materials as the abrasive blasting parameters changes, the optimal abrasive blasting parameters were identified as the SiC abrasive mesh size of 60# and the abrasive blasting distance and time of 60 mm and 15 s, respectively. The as-developed AcBN grains exhibited better fracture toughness and impact resistance than monocrystalline cBN (McBN) grains because of the existence of metal-bonded materials amongst multiple cBN particles that decreased crack propagation inside whole grains. The metallic porous AcBN wheels had lower grinding forces and temperature and better ground surface quality than vitrified McBN wheels due to the constant layer-by-layer exposure of cBN particles in the working layer of AcBN wheels.  相似文献   

19.
《中国航空学报》2022,35(12):278-286
Nickel-based alloy has been widely used due to its outstanding mechanical properties. However, Nickel-based alloy is a typical difficult-to-machine material, which is a great constrain for its application in the manufacturing field. To improve the surface quality of the ground workpiece, a new high-shear and low-pressure grinding wheel, with high ratio of tangential grinding force to normal grinding force, was fabricated for the grinding of selective laser melting (SLM) manufactured Inconel718 alloy. The principle of high-shear and low-pressure grinding process was introduced in detail, which was quite different from the conventional grinding process. The fabrication process of the new grinding wheel was illustrated. A serial of experiments with different processing parameters were carried out to investigate the grinding performance of the developed grinding wheel via analyzing surface roughness and surface morphology of the ground workpiece. The optimal processing parameters of high-shear and low-pressure grinding were obtained. The surface roughness of ground workpiece was reduced to 0.232 μm from the initial value of 0.490 μm under the optimal grinding conditions. It was found that the initial scratches on the ground workpiece were almost completely removed after the observations with the metalloscopy and the field-emission scanning electron microscopy (FE-SEM). The capability of the newly developed high-shear and low-pressure grinding wheel was validated.  相似文献   

20.
为了研究砂轮表面结构化对砂轮磨削性能的影响,利用脉冲激光对树脂结合剂金刚石砂轮进行了表面宏观结构化。采用6种不同类型的金刚石砂轮表面宏观结构进行了氧化铝的磨削实验,建立了激光宏观结构化金刚石砂轮的磨削力模型,比较了6种不同激光宏观结构化金刚石砂轮与非结构化砂轮在不同磨削参数下磨削力的差异,分析了砂轮制造后的表面形貌与结构化砂轮的磨损特性。实验结果表明,砂轮宏观结构化对磨削性能有很大影响,激光宏观结构化砂轮的磨削力可以减小2. 5%~24. 5%,砂轮结构化后的表面形貌出现石墨化现象;宏观结构化砂轮沟槽边缘磨损加剧,但沟槽磨损并没有明显加快宏观结构化砂轮的磨损。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号