首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A novel integrated guidance and autopilot design method is proposed for homing missiles based on the adaptive block dynamic surface control approach. The fully integrated guidance and autopilot model is established by combining the nonlinear missile dynamics with the nonlinear dynamics describing the pursuit situation of a missile and a target in the three-dimensional space. The integrated guidance and autopilot design problem is further converted to a state regulation problem of a time-varying nonlinear system with matched and unmatched uncertainties. A new and simple adaptive block dynamic surface control algorithm is proposed to address such a state regulation problem. The stability of the closed-loop system is proven based on the Lyapunov theory. The six degrees of freedom (6DOF) nonlinear numerical simulation results show that the proposed integrated guidance and autopilot algorithm can ensure the accuracy of target interception and the robust stability of the closed-loop system with respect to the uncertainties in the missile dynamics.  相似文献   

2.
张金鹏  燕洁静  李世华  罗生 《航空学报》2012,33(12):2291-2300
考虑目标机动和自动驾驶仪动态特性等情况,基于扰动观测器(DOB)技术及Backstepping的设计思想,提出了一种新型的三维导引律。运用Backstepping的设计思想,将包含驾驶仪动态特性的制导环路分为外环和内环两个环路。将目标机动及俯仰和偏航平面间的交叉耦合项当成外环扰动,将驾驶仪参数不确定当成内环扰动,分别设计内外扰动观测器将它们估计出来,利用估计值做前馈补偿得到的外环控制器可抑制目标机动对制导精度的影响及实现两个平面的解耦控制,内环控制器补偿驾驶仪动态特性对制导精度的影响。导引律的设计在于使得导弹的实际加速度跟踪上外环的虚拟控制。仿真结果表明:在目标做大机动、考虑驾驶仪动态特性的情况下,这种导引律仍然具有良好的制导精度。  相似文献   

3.
攻击地面固定目标寻的导弹的一体化制导与控制(英文)   总被引:4,自引:1,他引:3  
Hou  Duan   《中国航空学报》2008,21(2):162-168
This paper presents a scheme of integrated guidance and autopilot design for homing missiles against ground fixed targets. An integrated guidance and control model in the pitch plane is formulated and further changed into a normal form by nonlinear coordinate transformation. By adopting the sliding mode control approach, an adaptive nonlinear control law of the system is designed so that the missile can hit the target accurately with a desired impact attitude angle. The stability analysis of the closed-loop system is also conducted. The numerical simulation has confirmed the usefulness of the proposed design scheme.  相似文献   

4.
This paper presents an integrated missile guidance and control law based on adaptive fuzzy sliding mode control. The integrated model is formulated as a block-strict-feedback nonlinear system, in which modeling errors, unmodeled nonlinearities, target maneuvers, etc. are viewed as unknown uncertainties. The adaptive nonlinear control law is designed based on backstepping and sliding mode control techniques. An adaptive fuzzy system is adopted to approximate the coupling nonlinear functions of the system, and for the uncertainties, we utilize an online-adaptive control law to estimate the unknown parameters. The stability analysis of the closed-loop system is also conducted. Simulation results show that, with the application of the adaptive fuzzy sliding mode control, small miss distances and smooth missile trajectories are achieved, and the system is robust against system uncertainties and external disturbances.  相似文献   

5.
This paper provides a unified formulation of optimal guidance-to-collision law for a target with an arbitrary acceleration or deceleration. The collision course for general target acceleration or deceleration is first determined from the engagement geometry in conjunction with the nonlinear engagement kinematics in the proposed approach. The heading error defined in the collision course is then adopted as a variable to be nullified for accomplishing the intercept condition.The proposed guidance ...  相似文献   

6.
针对内部不确定性以及外部环境摄动的目标环绕控制问题,在基于反步法的双层制导框架下,利用级联控制思想,提出了一种圆形轨迹导引下的四旋翼无人机事件触发抗扰环绕控制方法。在轨迹回路中,构建了可满足持续激励条件的目标位置估计器,保证仅通过视线方位角就能获取可满足最终一致有界条件的目标估计项。随后,基于目标的位置估计结果,设计了目标环绕控制律生成线速度指令,并通过方向向量场验证了该环绕制导律的有效性,消除了现有李雅普诺夫向量场制导(LVFG)对相对位置和目标速度的依赖。在姿态回路中,通过采用扩张状态观测器(ESO)补偿系统的集总不确定性,设计了基于相对阈值事件触发控制的姿态控制器,在有效降低控制器到执行机构之间信号传输频率的同时,实现了四旋翼无人机对静止/移动目标环绕。然后,借助输入状态稳定性定理证明了系统的稳定性。仿真结果表明,所提控制方案能够实现圆形轨迹导引下四旋翼无人机对静止/移动目标的环绕监视。  相似文献   

7.
离散滑模导引律设计   总被引:2,自引:0,他引:2  
孙胜  周荻 《航空学报》2008,29(6):1634-1639
 基于平面内目标-导弹相对运动方程的离散形式,给出了离散滑模变结构导引律设计方法。推导出了一种与连续时间自适应滑模制导律的离散化形式相同的离散变结构导引律。在不需要知道目标法向加速度界限, 而只需要知道其在两个采样周期之间可能变化范围的条件下,设计了一种能显著降低系统抖动的离散滑模导引律,设计的同时给出了一种近似估计目标法向加速度的方法。从理论上证明了上述两种离散滑模导引律具有有限时间收敛的特性。讨论了离散滑模导引律的准滑动模态的切换带范围,给出了离散滑模导引律的终端脱靶量计算方法,最后以某空间拦截问题为实例验证了本文结果的正确性。  相似文献   

8.
王国庆  郭建国  周军 《飞行力学》2012,30(3):254-257,262
针对导弹对目标拦截问题,考虑测量信号信噪比影响,以非线性H∞控制理论为基础,应用Lya-punov函数稳定性的分析方法设计了具有强鲁棒性的非线性制导律。首先,以弹-目相对距离和相对速度为变量,并将目标机动视为扰动,建立弹-目相对运动的非线性数学模型。其次,基于零化弹目相对距离的思想,针对拦截过程中测量噪声的影响问题,提出了非线性H∞稳定控制策略,得到连续的非线性末制导律,并分析了信噪比与制导律参数的关系,对测量信号信噪比提出了要求。同时,严格证明了制导系统的稳定性,且无需求解HJI偏微分方程。仿真结果表明,这种制导律对大机动目标具有较强的鲁棒性和适应性,同时能获得良好的制导精度。  相似文献   

9.
This paper addresses the fixed-time adaptive model reference sliding mode control for an air-to-ground missile associated with large speed ranges, mismatched disturbances and un-modeled dynamics. Firstly, a sliding mode surface is developed by the tracking error of the state equation and the model reference state equation with respect to the air-to-ground missile. More specifically,a novel fixed-time adaptive reaching law is presented. Subsequently, the mismatched disturbances and the un-modeled dynamics are treated as the model errors of the state equation. These model errors are estimated by means of a fixed-time disturbance observer, and they are also utilized to compensate the proposed controller. Therefore, the fixed-time controller is obtained by an adaptive reaching law and a fixed-time disturbance observer. Closed-loop stability of the proposed controller is established. Finally, simulation results including Monte Carlo simulations, nonlinear six-DegreeOf-Freedom(6-DOF) simulations and different ranges are presented to demonstrate the efficacy of the proposed control scheme.  相似文献   

10.
In this paper, the multi-missile cooperative guidance system is formulated as a general nonlinear multi-agent system. To save the limited communication resources, an adaptive eventtriggered optimal guidance law is proposed by designing a synchronization-error-driven triggering condition, which brings together the consensus control with Adaptive Dynamic Programming(ADP) technique. Then, the developed event-triggered distributed control law can be employed by finding an approximate solution of eve...  相似文献   

11.
质量矩导弹构型及自适应控制律设计   总被引:1,自引:0,他引:1  
 质量矩导弹姿态运动模型含有活动质量块的位置、速度和加速度项,是典型的带有输入非线性的快时变多体系统。从构型和控制律设计两方面入手研究该类导弹跟踪控制问题。通过对姿态动力学模型的深入分析,获得了一种使系统具备良好动态品质的构型。以此为基础,建立了仿射型姿态运动模型,利用退步方法设计了控制律;考虑到系统中存在气动参数、外界扰动和执行机构动态特性等不确定因素,设计了鲁棒自适应补偿项;最后进行数学仿真,通过与标准退步控制律进行比较,验证了该控制律的有效性。  相似文献   

12.
A robust adaptive control scheme is proposed that can be applied to a practical autopilot design for feedback-linearized skid-to-turn (STT) missiles with aerodynamic uncertainties. The approach is to add a robust adaptive controller to a feedback-linearizing controller in order to reduce the influence of the aerodynamic uncertainties. The proposed robust adaptive control scheme is based on a sliding mode control technique with an adaptive law for estimating the unknown upper bounds of uncertain parameters. A feature of the proposed scheme is that missile systems with aerodynamic uncertainties can be controlled effectively over a wide operating range of flight conditions. It is shown, using Lyapunov stability theory, that the proposed scheme can give sufficient tracking capability and stability for a feedback-linearized STT missile with aerodynamic uncertainties. The six-degree-of-freedom nonlinear simulation results also show that good performance for several uncertainty models and engagement scenarios can be achieved by the proposed scheme in practical night conditions  相似文献   

13.
基于H控制的非线性末制导律设计   总被引:5,自引:1,他引:4  
郭建国  周军 《航空学报》2009,30(12):2423-2427
 针对三维目标拦截问题,提出一种新的具有强鲁棒性的非线性H末制导律。基于三维弹目相对运动学的非线性关系,将目标机动作为系统扰动,建立了弹目相对运动的数学模型。同时,基于零化弹目视线角速率的思想,提出一种全局非线性H稳定控制策略,得到了连续的非线性末制导律。该方法利用Lyapunov稳定性理论严格证明了制导系统的全局渐近稳定性,并且无需求解哈密尔顿-雅可比-艾萨克斯(HJI)偏微分方程,同时也无需控制弹目相对运动速度。数字仿真表明,和比例导引律相比,这种制导律对高速大机动目标具有很强的鲁棒性和适应性,并能获得良好的制导精度。  相似文献   

14.
An autonomous approach and landing (A&L) guidance law is presented in this paper for landing an unpowered reusable launch vehicle (RLV) at the designated runway touchdown.Considering the full nonlinear point-mass dynamics,a guidance scheme is developed in threedimensional space.In order to guarantee a successful A&L movement,the multiple sliding surfaces guidance (MSSG) technique is applied to derive the closed-loop guidance law,which stems from higher order sliding mode control theory and has advantage in the finite time reaching property.The global stability of the proposed guidance approach is proved by the Lyapunov-based method.The designed guidance law can generate new trajectories on-line without any specific requirement on off-line analysis except for the information on the boundary conditions of the A&L phase and instantaneous states of the RLV.Therefore,the designed guidance law is flexible enough to target different touchdown points on the runway and is capable of dealing with large initial condition errors resulted from the previous flight phase.Finally,simulation results show the effectiveness of the proposed guidance law in different scenarios.  相似文献   

15.
This article presents a complete nonlinear controller design for a class of spin-stabilized canard-controlled projectiles.Uniformly ultimate boundedness and tracking are achieved,exploiting a heavily coupled,bounded uncertain and highly nonlinear model of longitudinal and lateral dynamics.In order to estimate unmeasurable states,an observer is proposed for an augmented multiple-input-multiple-output(MIMO) nonlinear system with an adaptive sliding mode term against the disturbances.Under the frame of a backstepping design,an adaptive sliding mode output-feedback dynamic surface control(DSC) approach is derived recursively by virtue of the estimated states.The DSC technique is adopted to overcome the problem of ‘‘explosion of complexity" and relieve the stress of the guidance loop.It is proven that all signals of the MIMO closed-loop system,including the observer and controller,are uniformly ultimately bounded,and the tracking errors converge to an arbitrarily small neighborhood of the origin.Simulation results for the observer and controller are provided to illustrate the feasibility and effectiveness of the proposed approach.  相似文献   

16.
《中国航空学报》2021,34(3):164-175
In this paper, a robust adaptive controller is designed for a guided spinning rocket, whose dynamics presents the characteristics of pitch-yaw cross coupling, fast time-varying aerodynamics parameters and wide flight envelop. First, a coupled nonlinear six-degree-of-freedom equation of motion for a guided spinning rocket is developed, and the lateral acceleration motion is modeled as a control plant with time-varying matched uncertainties and unmodeled dynamics. Then, a robust adaptive control method is proposed by combining Bregman divergence and variational method to achieve fast adaption and maintain bounded tracking. The stability of the resulting closed-loop system is proved, and the ultimate bound and convergence rate are also analyzed. Finally, numerical simulations are performed for a single operating point and the whole flight trajectory to show the robustness and adaptability of the proposed method with respect to time-varying uncertainties and unmodeled dynamics.  相似文献   

17.
Based on the switched nonlinear system, a switched adaptive Active Disturbance Rejection Control(ADRC) law is proposed for the Variable Structure Near Space Vehicle(VSNSV) with unknown uncertainties and external disturbances. The reduced-order Extended State Observers(ESOs) are constructed for the attitude angle system and the angular rate system to estimate the total disturbance in real time. With the extended state introduced to counteract the effects of uncertainties and disturbances, a systematic procedure is presented for the synthesis of the switched adaptive ADRC strategy. Rigorous proof shows that the estimation errors of the reduced-order ESOs would converge to a small neighborhood of zero in finite time, and that the output of the closedloop system can track a given signal stably for a class of switching signals with average dwell time via the proposed approach. The variable gain control strategy based on Adaptive Dynamic Programming(ADP) with the actor-critic structure is also designed to improve the dynamic performance of the system. Simulation results verify the effectiveness and advantage of the proposed control scheme.  相似文献   

18.
高速再入飞行器的制导与控制系统设计   总被引:11,自引:0,他引:11  
 针对高速再入飞行器模型的快时变,强耦合,严重非线性的特点,采用反馈线性化方法,设计了自动驾驶仪;同时采用最优制导律设计与理想速度曲线相结合的方法,设计了能同时保证末端制导精度及速度方向、大小的制导律。最后,进行了六自由度仿真,结果表明 :设计的制导律及控制方案是合理、有效的,易于实现。  相似文献   

19.
A novel adaptive neural control strategy is exploited for the longitudinal dynamics of a generic flexible air-breathing hypersonic vehicle(FAHV).By utilizing functional decomposition method, the dynamics of FAHV is decomposed into the velocity subsystem and the altitude subsystem.For each subsystem, only one neural network is employed for the unknown function approximation.To further reduce the computational burden, minimal-learning parameter(MLP)technology is used to estimate the norm of ideal weight vectors rather than their elements.By introducing sliding mode differentiator(SMD) to estimate the newly defined variables, there is no need for the strict-feedback form and virtual controller.Hence the developed control law is considerably simpler than the ones derived from back-stepping scheme.Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties and varying disturbances.  相似文献   

20.
A robust guidance law is presented which renders zero miss distance (ZMD) against deterministically or randomly maneuvering targets for all missile parametric uncertainties. Since the resulting guidance controller is a phase-lead network, it is mainly suitable for systems characterized by moderate glint levels such as electro-optical missiles. The structured uncertainties in missile dynamics are modeled by interval transfer functions. It is first shown that for the nominal case, when the total missile transfer function is positive real, ZMD can be obtained. When uncertainties are considered, the problem becomes design of a guidance controller which renders a family of transfer functions positive real. A new algorithm for the design of such controllers is proposed. An example illustrating a typical design procedure for a nonlinear real-life missile model is given, showing the simplicity and effectiveness of the proposed robust guidance. The main conclusion of this work is that the newly developed guidance law performs well against highly maneuvering targets and may be a suitable alternative to optimal guidance laws in low-glint systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号