首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ultrasonic motors have the merits of high ratio of torque to volume, high positioning precision, intrinsic holding torque, etc., compared to the conventional electromagnetic motors. There have been several potential applications for this type of motor in aerospace exploration, but bearings and bonding mechanism of the piezoelectric ring in the motors limit the performance of them in the space operation conditions. It is known that the Langevin type transducer has excel- lent energy efficiency and reliability. Hence using the Langevin type transducer in ultrasonic motors may improve the reliability of piezoelectric motors for space applications. In this study, a novel in-plane mode rotary ultrasonic motor is designed, fabricated, and characterized. The proposed motor operates in in-plane vibration mode which is excited by four Langevin-type bending vibra- tors separately placed around a ring-shaped stator. Two tapered rotors are assembled to the inner ring of the stator and clamped together by a screw nut. In order to make the motor more stable and convenient to fix, a thin cylindrical support is placed under the stator ring. Due to its no-bearing structure and Langevin transducer excitation, the prototype ultrasonic motor may operate well in aeronautic and astronautic environments.  相似文献   

2.
Effective thermal control systems are essential for the reliable working of insulated gate bipolar transistors (IGBTs) in many applications. A novel spray cooling loop system with integrated sintered porous copper wick (SCLS-SPC) is proposed to meet the requirements of higher device level heat fluxes and the harsh environments in some applications such as hybrid, fuel cell vehicles and aerospace. Fuzzy logic and proportional-integral-derivative (PID) policies are applied to adjust the electronic temperature within a safe working range. To evaluate the thermal control effect, a mathematical model of a 4-node thermal network and pump are established for predicting the dynamics of the SCLS-SPC. Moreover, the transient response of the 4 nodes and vapor mass flowrate under no control, PID and Fuzzy-PID are numerically investigated and discussed in detail.  相似文献   

3.
Aerospace relay is one kind of electronic components which is used widely in national defense system and aerospace system. The existence of remainder particles induces the reliability declining, which has become a severe problem in the development of aerospace relay. Traditional particle impact noise detection (PIND) method for remainder detection is ineffective for small particles, due to its low precision and involvement of subjective factors. An auto-detection method for PIND output signals is proposed in this paper, which is based on direct wavelet de-noising (DWD), cross-correlation analysis (CCA) and homo-filtering (HF), the method enhances the affectiv-ity of PIND test about the small particles. In the end, some practical PIND output signals are analysed, and the validity of this new method is proved.  相似文献   

4.
《中国航空学报》2016,(3):722-737
Agile satellites are of importance in modern aerospace applications,but high mobility of the satellites may cause them vulnerable to saturation during attitude maneuvers due to limited rating of actuators.This paper proposes a near minimum-time feedback control law for the agile satellite attitude control system.The feedback controller is formed by specially designed cascaded sub-units.The rapid dynamic response of the modified Bang–Bang control logic achieves the near optimal property and ensures the non-saturation properties on three-axis.To improve the dynamic performance,a model reference control strategy is proposed,in which the on-line near optimal attitude maneuver path is generated by the cascade controller and is then tracked by a nonlinear back-stepping controller.Furthermore,the accuracy and the robustness of the control system are achieved by momentum-based on-line inertial identification.The rapid attitude maneuvering can be applied for tasks including the move to move case.Numerical simulations are conducted to verify the effectiveness of the proposed control strategy in terms of the saturation-free property and rapidness.  相似文献   

5.
Prolog is one of the most important candidates to build expert systems and AI-related programs and has potential applications in embedded systems. However, Prolog is not suitable to develop many kinds of components, such as data acquisition and task scheduling, which are also crucial. To make the best use of the advantages and bypass the disadvantages, it is attractive to integrate Prolog with programs developed by other languages. In this paper, an IPC-based method is used to integrate backward chaining inference implemented by Prolog into applications or embedded systems. A Prolog design pattern is derived from the method for reuse, whose principle and definition are provided in detail. Additionally, the design pattern is applied to a target system, which is free software, to verify its feasibility. The detailed implementation of the application is given to clarify the design pattern. The design pattern can be further applied to wide range applications and embedded systems and the method described in this paper can also be adopted for other logic programming languages.  相似文献   

6.
The continuously rotating detonation engine(CRDE)is a new concept of engines for aircraft and spacecraft.Quasi-stable continuously rotating detonation(CRD)can be observed in an annular combustion chamber,but the sustaining,stabilizing and adjusting mechanisms are not yet clear.To learn more deeply into the CRDE,experimental studies have been carried out to investigate hydrogen-oxygen CRDE.Pressure histories are obtained during each shot,which show that stable CRD waves are generated in the combustor,when feeding pressures are higher than 0.5 MPa for fuel and oxidizer,respectively.Each shot can keep running as long as fresh gas feeding maintains.Close-up of the pressure history shows the repeatability of pressure peaks and indicates the detonation velocity in hydrogen–oxygen CRD,which proves the success of forming a stable CRD in the annular chamber.Spectrum of the pressure history matches the close-up analysis and confirms the CRD.It also shows multi-wave phenomenon and affirms the fact that in this case a single detonation wave is rotating in the annulus.Moreover,oscillation phenomenon is found in pressure peaks and a self-adjusting mechanism is proposed to explain the phenomenon.  相似文献   

7.
In this paper, the operating conditions, technical requirements, performance characteristics, design ideas, application experiences and development trends of aerospace engine bearings, including material technology, integration design and reliability, are reviewed. The development history of aerospace engine bearing is recalled briefly at first. Then today's material technologies and the high bearing performances of the bearings obtained through the new materials are introduced, which play important roils in the aeroengine bearing developments. The integration design ideas and practices are explained to indicate its significant advantages and importance to the aerospace engine bearings. And the reliability of the shaft-bearing system is pointed out and treated as the key requirement with goals for both engine and bearing. Finally, as it is believed that the correct design comes from practice, the pre-qualification rig testing conducted by FAG Aerospace GmbH & Co. KG is briefly illustrated as an example. All these lead to the development trends of aerospace engine bearings from different aspects.  相似文献   

8.
The rising demand for Unmanned Aerial Systems(UASs) to perform tasks in hostile environments has emphasized the need for their simulation models for the preliminary evaluations of their missions. The efficiency of the UAS model is directly related to its capacity to estimate its flight dynamics with minimum computational resources. The literature describes several techniques to estimate accurate aircraft flight dynamics. Most of them are based on system identification. This paper presents an alternative methodology to obtain complete model of the S4 and S45 unmanned aerial systems. The UAS-S4 and the UAS-S45 models were divided into four sub-models, each corresponding to a specific discipline: aerodynamics, propulsion, mass and inertia, and actuator. The‘‘aerodynamic" sub-model was built using the Fderivatives in-house code, which is an improvement of the classical DATCOM procedure. The ‘‘propulsion" sub-model was obtained by coupling a two-stroke engine model based on the ideal Otto cycle and a Blade Element Theory(BET) analysis of the propeller. The ‘‘mass and the inertia" sub-model was designed utilizing the Raymer and DATCOM methodologies. A sub-model of an actuator using servomotor characteristics was employed to complete the model. The total model was then checked by validation of each submodel with numerical and experimental data. The results indicate that the obtained model was accurate and could be used to design a flight simulator.  相似文献   

9.
Different multidisciplinary design optimization (MDO) problems are formulated and compared. Two MDO formulations are applied to a sounding rocket in order to optimize the performance of the rocket. In the MDO of the referred vehicle, three disciplines have been considered,which are trajectory, propulsion and aerodynamics. A special design structure matrix is developed to assist data exchange between disciplines. This design process uses response surface method (RSM) for multidisciplinary optimization of the rocket. The RSM is applied to the design in two categories: the propulsion model and the system level. In the propulsion model, RSM deter-mines an approximate mathematical model of the engine output parameters as a function of design variables. In the system level, RSM fits a surface of objective function versus design variables. In the first MDO problem formulation, two design variables are selected to form propulsion discipline. In the second one, three new design variables from geometry are added and finally, an optimization method is applied to the response surface in the system level in order to find the best result. Application of the first developed multidisciplinary design optimization procedure increased accessible altitude (performance index) of the referred sounding rocket by twenty five percents and the second one twenty nine.  相似文献   

10.
Due to the characteristics of high efficiency, wide working range, and high flexibility,industrial robots are being increasingly used in the industries of automotive, machining, electrical and electronic, rubber and plastics, aerospace, food, etc. Whereas the low positioning accuracy,resulted from the serial configuration of industrial robots, has limited their further developments and applications in the field of high requirements for machining accuracy, e.g., aircraft assembly.In this paper, a...  相似文献   

11.
连续旋转爆轰发动机流场三维数值模拟   总被引:14,自引:5,他引:9  
对连续旋转爆轰发动机(continuous rotating detonation engine,简称CRDE)流场进行了三维数值模拟.数值计算获得同轴圆管腔内CRDE的多个爆轰循环过程.依据计算获得流场,分析了可燃气入射、提前燃烧、爆轰波结构等实现连续爆轰的几个关键机理问题.通过多个算例对不同来流总压时的旋转爆轰的推进性能进行了比较与分析,最后计算获得基于燃料的比冲约为2 200 s,燃料流量随总压变化呈线性增长.   相似文献   

12.
航空发动机健康等级综合评价方法   总被引:7,自引:1,他引:6  
研究意义在于将发动机的健康状态量化,进一步提高发动机健康状态评估的可操作性.决定发动机健康状态等级的因素众多,如故障发生的概率、故障的程度以及故障可能造成的损失风险等,且这些因素的影响作用均具有随机性和模糊性.将模糊综合评价方法应用于发动机健康状态等级的评估,将健康状态划分为5个等级,得到每个健康状态等级的隶属度函数,最后基于最大隶属度原则和最大危险性原则确定发动机的健康状态等级.通过对两组发动机故障模拟实验器振动数据的等级评价结果对比,验证了提出方法的有效性和合理性.   相似文献   

13.
电推进研究的技术状态和发展前景   总被引:33,自引:20,他引:13       下载免费PDF全文
论述了各类电推进器的工作原理、研究状况,在分析其主要工作特点的基础上,并根据国外成功应用的实例,说明了各类电推进器的适用场合。并就电推进器的研究与应用发展前景进行了展望。  相似文献   

14.
介绍在进行空天飞机推进系统设计时气动-推进界面的划分和几何参数的选择方法。根据选择的参数进行了小涵道比涡扇发动机和冲压发动机的性能计算,最后给出了空天飞机推进力的计算方法。  相似文献   

15.
This paper reviews the results of the thermal and static analysis of small motor aerospace technology (SMART) propulsion system, constituted of a microthrusters array realised by MEMS technology on silicon wafers. This system has been studied using FEM (NASTRAN) and the results have been verified by the electro-thermic analogy and the FDM method, using, respectively, SPICE and MATLAB codes. The simulation results demonstrated the feasibility of SMART systems for aerospace applications such as attitude control and deorbiting missions for small satellite station-keeping. A theoretical impulse of 20 mNs has been calculated for the SMART system.  相似文献   

16.
中国电推进技术发展及展望   总被引:5,自引:2,他引:3       下载免费PDF全文
为了促进国内电推进技术的发展,简要介绍了国际上主要电推力器的种类和特点,并结合国外电推进技术的研究及在轨应用情况,介绍了中国电推进技术发展过程和应用现状,总结了国内外电推进技术的发展趋势。在此基础上,根据国内深空探测、商业航天、重力场测量、引力波探测等空间任务对推进器的高比冲、长寿命、宽调节范围、低成本、高精度等需求,提出了国内电推进技术应该将小型离子推力器、大型霍尔推力器、脉冲等离子体推力器以及无拖曳控制推力器作为重点发展方向的建议。  相似文献   

17.
Reliability comparison of matrix and other converter topologies   总被引:1,自引:0,他引:1  
Several rectifier-inverter and matrix converter topologies suitable for aerospace applications are compared, and their reliability is predicted. The military handbook MIL-HDBK-217F guidelines have been used to predictreliability. The matrix converter has several attractive features for aerospace applications such as potential size and weight savings. Although the matrix converter has a higher number of semiconductor switches, they are subjected to a lower voltage stress, which decreases their failure rate. This results in the reliability indicators of the different converter topologies being very similar  相似文献   

18.
冲压推进技术评论   总被引:8,自引:4,他引:8       下载免费PDF全文
张克勋 《推进技术》1990,11(3):1-5,19,79
从飞航式导弹的历史发展的观点,论述了不同时期各类动力装置在导弹中的地位和作用.指出随导弹的不断发展,战术技术性能的不断提高,目前导弹正向超音速和高超音速(Ma>2~6)、中高空(H>15~40km)、超低空(H<30~100m)和中远程(L>100km)方向发展,而航空航天技术的发展也从亚音速、超音速开始发展到高超音速.这就是说导弹和航空航天技术已经发展到进入冲压发动机最佳工作领域的新阶段.为了适应未来新一代导弹以及军民用高超音速飞行器的技术要求,就必须发展一种重量轻、体积小、速度快、射程远而机动性能又好的动力装置,而冲压及其组合推进技术则是它的最佳选择.现在冲压推进技术本身的发展已近成熟,而导弹和航空航天的技术发展又为它提供广阔的活动新天地,冲压推进技术活跃于世界舞台的新时代即将到来.  相似文献   

19.
连续旋转爆轰发动机冷流场的混合特性研究   总被引:2,自引:0,他引:2  
周蕊  李晓鹏 《航空学报》2016,37(12):3668-3674
连续旋转爆轰发动机(CRDE)中燃料和氧化剂的快速掺混是实现爆轰波成功起爆和稳定传播的重要前提,然而目前国际上关于这方面的研究还相对较少。本文采用大涡模拟(LES)方法,对非预混CRDE中燃料和氧化剂的混合过程及其主要机理开展深入研究。研究结果表明,非预混CRDE流场中存在欠膨胀特征、大尺度涡结构,以及回流区等复杂的流动现象,其中由于Kelvin-Helmholtz(K-H)不稳定性产生的大尺度湍流涡结构是促进氢/氧混合的主要机制。此外,本文还考察了氧气喷注位置对非预混CRDE的流场结构和混合特征的影响,发现氧气喷注位置会影响射流剪切层形态、涡尺度,以及回流区分布等,进而影响氢气和氧气射流的混合过程和混合程度。与其他进气位置相比,氧气在靠近内壁面喷注时更有利于氢/氧的快速掺混。  相似文献   

20.
《中国航空学报》2021,34(3):94-104
Hypersonic airbreathing propulsion is one of the top techniques for future aerospace flight, but there are still no practical engines after seventy years' development. Two critical issues are identified to be the barriers for the ramjet-based engine that has been taken as the most potential concept of the hypersonic propulsion for decades. One issue is the upstream-traveling shock wave that develops from spontaneous waves resulting from continuous heat releases in combustors and can induce unsteady combustion that may lead to engine surging during scramjet engine operation. The other is the scramjet combustion mode that cannot satisfy thrust needs of hypersonic vehicles since its thermos-efficiency decreases as the flight Mach number increases. The two criteria are proposed for the ramjet-based hypersonic propulsion to identify combustion modes and avoid thermal choking. A standing oblique detonation ramjet (Sodramjet) engine concept is proposed based on the criteria by replacing diffusive combustion with an oblique detonation that is a unique pressure-gain phenomenon in nature. The Sodramjet engine model is developed with several flow control techniques, and tested successfully with the hypersonic flight-duplicated shock tunnel. The experimental data show that the Sodramjet engine model works steadily, and an oblique detonation can be made stationary in the engine combustor and is controllable. This research demonstrates the Sodramjet engine is a promising concept and can be operated stably with high thermal efficiency at hypersonic flow conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号