首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This paper deals with the problem of non-fragile linear parameter-varying(LPV) H_∞ control for morphing aircraft with asynchronous switching.The switched LPV model of morphing aircraft is established by Jacobian linearization approach according to the nonlinear model.The data missing is taken into account in the link from sensors to controllers and the link from controllers to actuators,which satisfies Bernoulli distribution.The non-fragile switched LPV controllers are constructed with consideration of the uncertainties of controllers and asynchronous switching phenomenon.The parameter-dependent Lyapunov functional method and mode-dependent average dwell time(MDADT) method are combined to guarantee the stability and prescribed performance of the system.The sufficient conditions on the solvability of the problem are derived in the form of linear matrix inequalities(LMI).In order to achieve higher efficiency of the designing process,an algorithm is applied to divide the whole set into subsets automatically.Simulation results are provided to verify the effectiveness and superiority of the method in the paper.  相似文献   

2.
《中国航空学报》2016,(3):596-607
To analyze the parachute dynamics and stability characteristics of precision airdrop system,the fluid–structure interaction(FSI) dynamics coupling with the flight trajectory of a parachute–payload system is comprehensively predicted by numerical methods.The inflation behavior of a disk-gap-band parachute is specifically investigated using the arbitrary Lagrangian–Euler(ALE) penalty coupling method.With the available aerodynamic data obtained from the FSI simulation,a nine-degree-of-freedom(9DOF) dynamic model of a parachute–payload system is built and solved to simulate the descent trajectory of the multi-body dynamic system.Finally,a linear five-degree-of-freedom(5DOF) dynamic model is developed,the perturbation characteristics and the motion laws of the parachute and payload under a wind gust are analyzed by the linearization method and verified by a comparison with flight test data.The results of airdrop test demonstrate that our method can be further applied to the guidance and control of precision airdrop systems.  相似文献   

3.
This article proposes a linear parameter varying (LPV) switching tracking control scheme for a flexible air-breathing hypersonic vehicle (FAHV). First, a polytopic LPV model is constructed to represent the complex nonlinear longitudinal model of the FAHV by using Jacobian linearization and tensor-product (T-P) model transformation approach. Second, for less conservative controller design purpose, the flight envelope is divided into four sub-regions and a non-fragile LPV controller is designed for each parameter sub-region. These non-fragile LPV controllers are then switched in order to guarantee the closed-loop FAHV system to be asymptotically stable and satisfy a specified performance criterion. The desired non-fragile LPV switching controller is found by solving a convex constraint problem which can be efficiently solved using available linear matrix inequality (LMI) techniques, and robust stability analysis of the closed-loop FAHV system is verified based on multiple Lypapunov functions (MLFs). Finally, numerical simulations have demonstrated the effectiveness of the proposed approach.  相似文献   

4.
Usually, it is very difficult to find out an analytical solution to thermal conduction problems during high temperature welding. Therefore, as an important numerical approach, the method of lines (MOLs) is introduced to solve the temperature field characterized by high gradients. The basic idea of the method is to semi-discretize the governing equation of the problem into a system of ordinary dif-ferential equations (ODEs) defined on discrete lines by means of the finite difference method, by which the thermal boundary condition with high gradients are directly embodied in formulation. Thus the temperature field can be obtained by solving the ODEs. As a numeri-cal example, the variation of an axisymmetrical temperature field along the plate thickness can be obtained.  相似文献   

5.
In this paper, the attitude stabilization problem of a rigid spacecraft described by Rodrigues parameters is investigated via a composite control strategy, which combines a feedback control law designed by a finite time control technique with a feedforward compensator based on a linear disturbance observer (DOB) method. By choosing a suitable coordinate transformation, the spacecraft dynamics can be divided into three second-order subsystems. Each subsystem includes a certain part and an uncertain part. By using the finite time control technique, a continuous finite time controller is designed for the certain part. The uncertain part is considered to be a lumped disturbance, which is estimated by a DOB, and a corresponding feedforward design is then implemented to compensate the disturbance. Simulation results are employed to confirm the effectiveness of the proposed approach.  相似文献   

6.
The control volume method gives the forces which act on the system, but not necessarily the wall pressure of the system. The author has made an attempt to develop a control volume method which makes it possible to obtain the wall pressure of the control volume. The 2-D inviscid incompressible steady duct flow is considered. The conservation equations in integral form are discretized for a control volume. The circulation along the control surface is expressed as a nonlinear function of the vertical velocity component at the inlet and is set equal to zero for the inviscid flow. The equation is solved by the Newton method, and the other aerodynamic properties can be obtained. The calculated results have been compared to the experiment and the agreement has been found fairly satisfactory.  相似文献   

7.
The paper presents a new three-dimensional (3D) cooperative guidance approach by the receding horizon control (RHC) technique. The objective is to coordinate the impact time of a group of interceptor missiles against the stationary target. The framework of a distributed RHC scheme is developed, in which each interceptor missile is assigned its own finite-horizon optimal control problem (FHOCP) and only shares the information with its neighbors. The solution of the local FHOCP is obtained by the constrained particle swarm optimization (PSO) method that is integrated into the distributed RHC framework with enhanced equality and inequality con-straints. The numerical simulations show that the proposed guidance approach is feasible to imple-ment the cooperative engagement with satisfied accuracy of target capture. Finally, the computation efficiency of the distributed RHC scheme is discussed in consideration of the PSO parameters, con-trol update period and prediction horizon.  相似文献   

8.
Based on linear matrix inequalities (LMI), the design method of reduced-order controllers of mixed sensitivity problem is studied for flight control systems. It is shown that there exists a controller with order not greater than the difference between the generalized plant order and the number of independent control variables, if the mixed sensitivity problem is solvable for strict regular flight control plants. The proof is constructive, and an approach to design such a controller can be obtained in terms of a pair of feasible solution to the well-known 3 LMI. Finally, an example of mixed sensitivity problem for a flight control system is given to demonstrate practice of the approach.  相似文献   

9.
This paper proposes a method for planning the three-dimensional path for low-flying unmanned aerial vehicle(UAV) in complex terrain based on interfered fluid dynamical system(IFDS) and the theory of obstacle avoidance by the flowing stream. With no requirement of solutions to fluid equations under complex boundary conditions, the proposed method is suitable for situations with complex terrain and different shapes of obstacles. Firstly, by transforming the mountains, radar and anti-aircraft fire in complex terrain into cylindrical, conical, spherical, parallelepiped obstacles and their combinations, the 3D low-flying path planning problem is turned into solving streamlines for obstacle avoidance by fluid flow. Secondly, on the basis of a unified mathematical expression of typical obstacle shapes including sphere, cylinder, cone and parallelepiped, the modulation matrix for interfered fluid dynamical system is constructed and 3D streamlines around a single obstacle are obtained. Solutions to streamlines with multiple obstacles are then derived using weighted average of the velocity field. Thirdly, extra control force method and virtual obstacle method are proposed to deal with the stagnation point and the case of obstacles’ overlapping respectively. Finally, taking path length and flight height as sub-goals, genetic algorithm(GA) is used to obtain optimal 3D path under the maneuverability constraints of the UAV. Simulation results show that the environmental modeling is simple and the path is smooth and suitable for UAV. Theoretical proof is also presented to show that the proposed method has no effect on the characteristics of fluid avoiding obstacles.  相似文献   

10.
The slewing motion control of a truss arm driven by a V-gimbaled control-moment-gyro (CMG) is a nonlinear control problem. The V-gimbaled CMG consists of a pair of gyros that must precess synchronously. The moment of inertia of the system, the angular momentum of the gyros and the external disturbances are not exactly known. With the help of feedback linearization and recursive Lyapunov design method, an adaptive nonlinear controller is designed to deal with the unknown items. Performance of the proposed controller is verified by simulation.  相似文献   

11.
针对含有航路点、禁飞区约束的再入突防轨迹优化问题,提出了基于HP自适应Radau伪谱法(HP-RPM)的分段轨迹优化策略,给出了在含有热流密度、过载、动压、航路点和禁飞区等约束条件下的再入轨迹优化模型;利用HP-RPM对含有再入的最优控制问题进行离散化,将其转为非线性规划问题,并根据航路点所在的位置,对再入轨迹进行分段,以再入滑翔飞行的时间最短为仿真目标函数进行仿真计算。仿真结果表明,此方法可以生成一条满足多种约束条件的高精度优化轨迹,并且用时较短。  相似文献   

12.
A problem of geometrically nonlinear deformation and stability of cylindrical shells with noncircular cross-section contour is solved by the finite element method. The nonlinear system of algebraic equations to determine the nodal unknowns of finite elements is obtained with the use of the variational Lagrange principle. The system is solved by the method of successive loadings with the use of the Newton-Kantorovich method of linearization, the method of solving linear Craut’s equations and Sylvestor’s stability criterion. The nonlinear deformation and stability of shells with the oval and elliptical cross-sections under combined loading by bending and torsion moments are analyzed. The critical loads and buckling modes of shells are determined. The influence of deformation nonlinearity, shell ovality and ellipticity on the critical loads is clarified.  相似文献   

13.
研究了普适变量下状态方程的最优控制问题.在消除奇点的轨道根数的基础上,建立了普适变量下适合圆锥曲线求解的摄动方程.利用Gauss伪谱法对摄动方程进行了最优控制求解和仿真验证.计算过程及仿真结果表明,所建立的摄动方程以及所用的Gauss法能够满足各种约束条件,便于对发动机进行控制,且在零倾角轨道情况下不产生奇异.  相似文献   

14.
应用非线性反馈精确线性化方法进行了飞机自动着陆系统设计。首先,用非线性微分方程组表示的飞机纵向控制系统,在经过输入输出反馈线性化以后,可等效为线性系数;然后,用线性的PID控制方法对变换后的线性系统进行了设计;最后,考虑风的干扰,对所设计的飞机自动着陆控制系统进行了数字仿真。仿真结果表明,用反馈线性化方法设计的飞控系统具有良好的性能。  相似文献   

15.
针对敏捷遥感卫星对多个离散观测点在轨自主任务规划问题,在考虑姿态运动方程耦合性的基础上,将问题分解为空间资源调度问题和连续最优控制问题,进而提出了一种结合伪谱法和遗传算法的混合求解算法。该算法针对基于行商问题(TSP)模型建立的空间资源调度问题模型,选用二维编码结构对观测顺序和相对观测时间进行实数编码,并采用遗传算法求解观测序列和观测时间;针对判断观测时间可行性时涉及的时间最优控制问题、以及姿态转移过程中涉及的最小能量消耗问题,将其归结为连续最优控制问题,并基于Gauss伪谱协态变量映射定理,采用Gauss伪谱法进行求解。通过与基于单纯遗传算法的规划算法进行对比试验,本文所提出的基于伪谱法和遗传算法的混合求解策略针对目标问题,在典型工况下姿态转移过程中能量消耗降低60%。  相似文献   

16.
Legendre-Gauss拟谱法求解最优控制问题   总被引:3,自引:0,他引:3  
童科伟  周建平  何麟书 《航空学报》2008,29(6):1531-1537
 提出一种新的求解基于常微分方程(ODE)和微分代数方程(DAE)的最优控制问题的数值方法。本方法基于直接配置法,通过Legendre-Gauss拟谱法同时离散化状态变量和控制变量把最优控制问题转化为一个非线性规划问题。与传统的直接转换法相比,本方法具有精度高、计算量小、结构简单的特点,而且可以求解最优控制“多相”问题。数值结果表明,本方法是一种通用的精度较高的最优控制直接数值求解法,可用于求解ODE/DAE最优控制问题。  相似文献   

17.
推进系统综合性能寻优控制研究   总被引:7,自引:5,他引:2       下载免费PDF全文
任新宇  杨育武  樊思齐 《推进技术》2010,31(1):61-64,81
研究了包括进气道和发动机在内的推进系统综合控制。采用了序列线性规划方法进行系统寻优,利用推进系统矩阵进行多次线性规划来求解非线性优化问题。利用当前的实际机载计算机完成了硬件在回路仿真试验,仿真表明研究的性能寻优控制方法能够较大幅度的提高推进系统整体性能,控制软件完全满足实时计算要求。  相似文献   

18.
研究了优化反导拦截弹的越肩发射制导律,实现了对尾追目标的拦截,采用伪谱法和滑膜变结构理论设计了全弹道复合制导规律。利用Radau伪谱法求解以转弯时间最优为指标泛函的最佳转弯规律,通过曲线拟合给出了初制导转弯段的过载指令。选择零控脱靶量作为滑动模态对末制导律进行设计;利用这两种制导律的加速度指令构造了交接班导引律实现弹道的平滑。最后,对载机越肩发射反导拦截弹拦截来袭导弹的反导场景进行了数字仿真,结果表明所设计的复合制导律能够完成反导拦截任务。  相似文献   

19.
《中国航空学报》2021,34(1):237-251
In this study, the problem of time-optimal reconnaissance trajectory design for the aeroassisted vehicle is considered. Different from most works reported previously, we explore the feasibility of applying a high-order aeroassisted vehicle dynamic model to plan the optimal flight trajectory such that the gap between the simulated model and the real system can be narrowed. A highly-constrained optimal control model containing six-degree-of-freedom vehicle dynamics is established. To solve the formulated high-order trajectory planning model, a pipelined optimization strategy is illustrated. This approach is based on the variable order Radau pseudospectral method, indicating that the mesh grid used for discretizing the continuous system experiences several adaption iterations. Utilization of such a strategy can potentially smooth the flight trajectory and improve the algorithm convergence ability. Numerical simulations are reported to demonstrate some key features of the optimized flight trajectory. A number of comparative studies are also provided to verify the effectiveness of the applied method as well as the high-order trajectory planning model.  相似文献   

20.
刘洁  韩维  徐卫国  刘纯  袁培龙  陈志刚  彭海军 《航空学报》2019,40(8):322842-322842
针对单机滑行、无杆牵引系统以及有杆牵引系统的轨迹跟踪问题进行了研究。首先,将这3种系统的轨迹跟踪问题转化为最优控制问题,并建立了连续非线性舰载机系统的轨迹跟踪模型。然后,基于第3类生成函数,提出了适用范围更广的全状态保辛伪谱算法,并结合滚动时域理论提出了基于滚动时域(RHC)的在线跟踪最优控制方法,证明了所提算法是一种保辛算法。基于所提出的在线跟踪算法,对单机滑行、无杆牵引系统、有杆牵引系统在存在初始偏差和持续外界扰动情况下的轨迹跟踪问题分别进行了研究,并与BackwardSweep方法进行对比分析,结果表明本文所提出的跟踪算法可以有效地解决具有控制约束和状态约束的轨迹跟踪问题,并可以更高的跟踪精度和计算效率对标准轨迹进行跟踪,可完全满足实时跟踪的要求。最后,分别从初始偏差和持续外界扰动的角度研究了这3种不同方式的跟踪特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号