首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the problem of non-fragile linear parameter-varying (LPV) H∞ control for morphing aircraft with asynchronous switching.The switched LPV model of morphing aircraft is established by Jacobian linearization approach according to the nonlinear model.The data missing is taken into account in the link from sensors to controllers and the link from controllers to actuators,which satisfies Bernoulli distribution.The non-fragile switched LPV controllers are con structed with consideration of the uncertainties of controllers and asynchronous switching phenomenon.The parameter-dependent Lyapunov functional method and mode-dependent average dwell time (MDADT) method are combined to guarantee the stability and prescribed performance of the system.The sufficient conditions on the solvability of the problem are derived in the form of linear matrix inequalities (LMI).In order to achieve higher efficiency of the designing process,an algo rithm is applied to divide the whole set into subsets automatically.Simulation results are provided to verify the effectiveness and superiority of the method in the paper.  相似文献   

2.
基于切换多胞LPV的涡扇发动机全包线中间状态控制   总被引:3,自引:1,他引:2  
吴斌  黄金泉 《航空动力学报》2016,31(8):2040-2048
针对航空发动机全包线内参数变化范围较大,单一控制器很难保证全包线内的控制效果的问题,提出了基于切换多胞线性变参数(LPV)的发动机全包线中间状态控制方法.根据发动机的进口条件将飞行包线分为相互重叠的子区域,将多胞理论及状态重置切换方法引入控制器求解,给出了能够保证切换多胞LPV系统鲁棒稳定的线性矩阵不等式(LMI)条件;利用求解出的Lyapunov矩阵设计各子区域的LPV控制器,并结合几何位置调度策略实现子区域LPV控制;利用局部重叠的滞后切换策略和状态重置切换律实现全包线内各控制器的切换,并证明了该闭环切换系统的稳定性.最终以某型涡扇发动机为研究对象进行仿真验证,结果表明:采用该控制方法稳态误差能够控制在0.1%以内,超调量不大于0.5%.   相似文献   

3.
高超声速飞行器大包线切换LPV控制方法   总被引:6,自引:0,他引:6  
张增辉  杨凌宇  申功璋 《航空学报》2012,33(9):1706-1716
高超声速飞行器飞行包线和参数变化范围大,气动参数存在较强不确定性,要求控制器能够适应大的飞行包线并具有较好的鲁棒性。针对上述问题,提出一种基于间隙度量的大包线滞后切换线性变参数(LPV)控制方法。依照时变参数将设计包线划分为若干子区域,将多胞理论和间隙度量引入控制器求解,提出了基于最优间隙度量的LPV控制方法,并利用此方法独立设计各子区域的LPV控制器,以改善控制器控制性能和鲁棒性能;利用基于重叠区域的滞后切换策略实现大包线内各子区域控制器的切换,以抑制切换面附近控制器的切换抖动,并证明了切换闭环系统的稳定性;最后以某型高超声速飞行器为对象设计了大包线滞后切换LPV控制器。仿真结果表明该方法可实现控制指令的精确跟踪,提高设计包线内LPV控制器的控制性能和鲁棒性能,并能保证切换系统的稳定性。  相似文献   

4.
航空发动机增益调度控制的多项式平方和规划方法   总被引:2,自引:0,他引:2  
吴斌  黄金泉 《航空动力学报》2016,31(6):1460-1468
针对现有的线性变参数(linear parameter varying,LPV)控制器设计方法都是关于仿射参数依赖系统而没有专门针对多项式描述的LPV系统这一现状,提出了一种基于多项式平方和(sum of squares,SOS)规划的增益调度控制设计方法,并将其用于转速大范围变化时的航空发动机高压转子转速及压比控制.根据发动机非线性模型获取不同转速下的状态空间模型,并利用多项式拟合的方法建立发动机线性变参数模型.给出能够保证无静差的增益调度控制结构,利用有界实定理和多项式平方和理论推导出能够保证闭环系统鲁棒稳定的SOS约束条件,并形成控制器求解的SOS规划问题,通过求解获得多项式描述的增益调度控制器.分别以LPV模型和发动机非线性模型为对象做阶跃仿真,结果表明:高压转子转速/发动机压比控制系统的调节时间在2s以内,稳态误差不超过0.1%.   相似文献   

5.
应用保护映射理论的高超声速飞行器自适应控制律设计   总被引:2,自引:2,他引:0  
肖地波  陆宇平  刘燕斌  许晨 《航空学报》2015,36(10):3327-3337
针对高超声速飞行器包线范围广、参数变化大的控制需求,应用保护映射理论提出一种高超声速飞行器的自适应控制律设计方法。首先建立整个飞行包线内的线性变参数(LPV)模型,在参数变化边界点设计一个初始的控制结构和参数,然后基于保护映射理论分析初始控制结构使闭环系统稳定的参数范围,通过迭代自动获取整个包线内满足性能指标的控制参数,进而通过多项式拟合设计出高超声速飞行器自适应控制律。所提出的方法能够根据初始控制结构自动寻找一系列满足性能要求的控制器参数,并确定这些控制参数满足闭环系统稳定的设计范围。仿真结果表明,所设计的自适应控制律能够确保高超声速飞行器大包线的设计要求,实现闭环系统的鲁棒稳定。  相似文献   

6.
《中国航空学报》2020,33(10):2679-2693
In recent years, the Active Flutter Suppression (AFS) employing Linear Parameter-Varying (LPV) framework has become a hot spot in the research field. Nevertheless, the flutter suppression technique is facing two severe challenges. On the one hand, due to the fatal risk of flight test near critical airspeed, it is hard to obtain the accurate mathematical model of the aeroelastic system from the testing data. On the other hand, saturation of the actuator may degrade the closed-loop performance, which was often neglected in the past work. To tackle these two problems, a new active controller design procedure is proposed to suppress flutter in this paper. Firstly, with the aid of LPV model order reduction method and State-space Model Interpolation of Local Estimates (SMILE) technique, a set of high-fidelity Linear Time-Invariant (LTI) models which are usually derived from flight tests at different subcritical airspeeds are reduced and interpolated to construct an LPV model of an aeroelastic system. And then, the unstable aeroelastic dynamics beyond critical airspeed are ‘predicted’ by extrapolating the resulting LPV model. Secondly, based on the control-oriented LPV model, an AFS controller in LPV framework which is composed of a nominal LPV controller and an LPV anti-windup compensator is designed to suppress the aeroelastic vibration and overcome the performance degradation caused by actuator saturation. Although the nominal LPV controller may have superior performance in linear simulation in which the saturation effect is ignored, the results of the numerical simulations show that the nominal LPV controller fails to suppress the Body Freedom Flutter (BFF) when encountering the actuator saturation. However, the LPV anti-windup compensator not only enhances the nominal controller’s performance but also helps the nominal controller to stabilize the unstable aeroelastic system when encountering serious actuator saturation.  相似文献   

7.
基于多项式平方和规划的航空发动机鲁棒LPV/PI控制   总被引:1,自引:0,他引:1  
针对航空发动机常规(proportion integration,PI)控制器设计过程中难以保证鲁棒性及参数适应性差等问题,提出了一种基于线性变参数(linear parameter varying,LPV)模型及多项式平方和(sum of squares,SOS)规划的控制器设计方法.结合传递函数模型下的鲁棒稳定条件及弱对偶定理给出了多项式描述的LPV模型鲁棒稳定条件,并转化为便于求解的SOS规划问题.根据发动机非线性模型获取不同转速下的传递函数模型,并利用多项式拟合的方法建立发动机LPV模型.根据所提出的定理构造出SOS规划问题,并求解得出LPV/PI控制器.最终以某型双轴涡扇发动机为被控对象,在包线内不同点进行了阶跃仿真,结果表明:高压转子转速控制系统的稳态误差为0,调节时间小于3s.   相似文献   

8.
This article investigates gain self-scheduled H 1 robust control system design for a tailless fold- ing-wing morphing aircraft in the wing shape varying process. During the wing morphing phase, the aircraft’s dynamic response will be governed by time-varying aerodynamic forces and moments. Nonlinear dynamic equations of the morphing aircraft are linearized by using Jacobian linearization approach, and a linear parameter varying (LPV) model of the morphing aircraft in wing folding is obtained. A multi-loop controller for the morphing aircraft is formulated to guarantee stability for the wing shape transition process. The proposed controller uses a set of inner-loop gains to provide stability using classical techniques, whereas a gain self-scheduled H 1 outer-loop controller is devised to guarantee a specific level of robust stability and performance for the time-varying dynamics. The closed-loop simulations show that speed and altitude vary slightly during the whole wing folding process, and they converge rapidly after the process ends. This proves that the gain self-scheduled H 1 robust controller can guarantee a satisfactory dynamic performance for the morphing aircraft during the whole wing shape transition process. Finally, the flight control system’s robustness for the wing folding process is verified according to uncertainties of the aerodynamic parameters in the nonlinear model.  相似文献   

9.
This paper is concerned with a systematic method of smooth switching linear parametervarying(LPV) controllers design for a morphing aircraft with a variable wing sweep angle. The morphing aircraft is modeled as an LPV system, whose scheduling parameter is the variation rate of the wing sweep angle. By dividing the scheduling parameter set into subsets with overlaps, output feedback controllers which consider smooth switching are designed and the controllers in overlapped subsets are interpolated from two adjacent subsets. A switching law without constraint on the average dwell time is obtained which makes the conclusion less conservative. Furthermore,a systematic algorithm is developed to improve the efficiency of the controllers design process. The parameter set is divided into the fewest subsets on the premise that the closed-loop system has a desired performance. Simulation results demonstrate the effectiveness of this approach.  相似文献   

10.
多模型切换控制及其在BTT导弹设计中的应用   总被引:6,自引:0,他引:6  
段广仁  王好谦 《航空学报》2005,26(2):144-147
研究了一类可以抑制切换时刻输出跳跃的多模型切换控制器的设计问题。基于参数化特征结构配置结果及模型跟踪方法,设计了满足输出跟踪性能并使多模型系统中各闭环子系统渐近稳定的多模型切换控制律集合。充分利用参数化特征结构配置方法提供的全部自由度,协调选取各子系统控制律中的参数来抑制切换时刻的输出跳跃。将本文提出的方法应用到某型倾斜转弯导弹自动驾驶仪设计中,仿真结果表明导弹的输出过载迅速准确跟踪制导指令,并且切换抖动得到有效抑制。  相似文献   

11.
针对能够在飞行过程中进行结构变形的变体无人机,考虑由变形引起的气动力与力矩,惯性力与力矩的非线性变化,建立其在质点系假设条件下的多体动力学模型。根据切换系统理论,将变体无人机视为一类线性切换系统,选择设计点,采用极点配置方法针对各设计点处的线性子系统设计控制器,再制定以变形量为决策变量的控制切换方案,构成切换控制系统。通过建立公共Lyapunov函数,推导了能够保证闭环切换系统在结构变形过程中一致有界的充分条件。以变体无人机Fire-Bee为例,验证了方案的有效性,仿真结果表明闭环系统无论在固定结构下还是变形过程中都具有良好的动态特性。  相似文献   

12.
针对航空发动机全包线多变量鲁棒变增益控制器设计问题,提出了一种基于混合区域极点配置的鲁棒变参数控制方法。利用Jacobian方法建立多调度参数下的发动机仿射线性变参数(Linear parameter varying,LPV)模型,用于描述发动机全包线内的非线性动态特性;针对上述LPV模型,采用仿射参数依赖Lyapunov函数设计具有H∞鲁棒性能的状态反馈控制器,给出了控制系统全局稳定性的证明;并利用混合区域极点配置方法,将闭环系统极点配置到左半平面指定位置,以保证控制系统的动态特性及稳定裕度;进而引入凸多胞技术,将参数依赖线性矩阵不等式(Linear matrix inequality,LMI)方程转化为有限维LMI进行控制器求解,并得到了全局解。针对涡扇发动机的仿真结果表明:存在复杂量测噪声干扰条件下,鲁棒变参数控制器可以实现发动机全包线内控制指令的精确跟踪,系统阶跃响应的调节时间不超过1.5s,系统无超调,对控制期望的稳态跟踪误差在0.02%以内,符合发动机控制系统技术要求。  相似文献   

13.
A model reference adaptive control (MRAC) with smooth switching scheme was proposed for piecewise linear systems, and the method was utilized in turbofan engine control to avoid the discontinuity of control input. In this scheme, each sub-region of the operating envelope had its own MRAC controller, and smooth indicator function based smooth switching scheme was introduced to switch multiple controllers smoothly at the boundary of adjacent sub-regions. The Lyapunov stability analysis indicated that the proposed smooth switching scheme can guarantee the convergence of the closed-loop system during the controllers switching. The tracking error system was converted into a switched system to analyze the global stability of the closed-loop system. The advantage of the method was that the chattering of system output and instability caused by asynchronous switching can be eliminated. The simulation illustrates the effectiveness of the proposed control scheme in comparison with the existing MRAC controller with gain scheduling for turbofan engine.   相似文献   

14.
This article deals with the disturbance attenuation control of aircraft flying through wind shear via Linear Parameter Varying(LPV) modeling and control method. A Flight Dynamics Model(FDM) with wind shear effects considered was established in wind coordinate system. An LPV FDM was built up based on function substitution whose decomposing function was optimized by Genetic Algorithm(GA). The wind disturbance was explicitly included in the system matrix of LPV FDM. Taking wind disturbance as external uncertainties, robust LPV control method with the LPV FDM was put forward. Based on ride quality and flight safety requirements in wind disturbance, longitudinal and lateral output feedback robust LPV controllers were designed respectively,in which the scheduling flight states in LPV model were actually dependent parameters in LPV control. The results indicate that LPV FDM can reflect the instantaneous dynamics of nonlinear system especially at the boundary of aerodynamic envelope. Furthermore, the LPV FDM also can approach nonlinear FDM's response in wind disturbance special flight. Compared with a parameter-invariant LQR controller designed with a small-disturbance FDM, the LPV controllers show preferable robustness and stability for disturbance attenuation.  相似文献   

15.
A novel turbofan Direct Thrust Control(DTC) architecture based on Linear ParameterVarying(LPV) approach for a two-spool turbofan engine thrust control is proposed in this paper.Instead of transforming thrust command to shaft speed command and pressure ratio command, the thrust will be directly controlled by an optimal controller with two control variables. LPV model of the engine is established for the designing of thrust estimator and controller. A robust LPV H∞filter is introduced to estimate ...  相似文献   

16.
针对航空发动机动态特性随飞行状态和飞行条件的变化范围大,单一控制器很难保证全包线内控制效果的问题,在航空发动机LPV模型基础上提出1种平滑过渡的切换控制方法。该方法根据发动机进口条件对飞行包线区域进行划分,按照多项式平方和规划理论以及平滑过渡切换律求取各子区域的Lyapunov函数及LPV控制器。在某型涡扇发动机上进行仿真验证,结果表明:所设计的切换LPV控制器在不同高度、马赫数和转速条件下均具有良好的性能和控制精度,可以实现平滑切换。  相似文献   

17.
To solve the problem of robust servo performance of Flight Environment Testbed(FET)of Altitude Ground Test Facilities(AGTF) over the whole operational envelope, a two-degree-offreedom μ synthesis method based on Linear Parameter Varying(LPV) schematic is proposed, and meanwhile a new structure frame of μ synthesis control on two degrees of freedom with double integral and weighting functions is presented, which constitutes a core support part of the paper. Aimed at the problem of reference command's rapid change, one freedom feed forward is adopted, while another freedom output feedback is used to meet good servo tracking as well as disturbance and noise rejection; furthermore, to overcome the overshoot problem and acquire dynamic tuning,the integral is introduced in inner loop, and another integral controller is used in outer loop in order to guarantee steady errors; additionally, two performance weighting functions are designed to achieve robust specialty and control energy limit considering the uncertainties in system. As the schedule parameters change over large flight envelope, the stability of closed-loop LPV system is proved using Lyapunov inequalities. The simulation results show that the relative tracking errors of temperature and pressure are less than 0.5% with LPV μ synthesis controller. Meanwhile, compared with non-LPV μ synthesis controller in large uncertainty range, the proposed approach in this research can ensure robust servo performance of FET over the whole operational envelope.  相似文献   

18.
Plug-and-play technology is an important direction for future development of spacecraft and how to design controllers with less communication burden and satisfactory performance is of great importance for plug-and-play spacecraft. Considering attitude tracking of such spacecraft with unknown inertial parameters and unknown disturbances, an event-triggered adaptive backstepping controller is designed in this paper. Particularly, a switching threshold strategy is employed to design the event-triggering mechanism. By introducing a new linear time-varying model, a smooth function, an integrable auxiliary signal and a bound estimation approach, the impacts of the network-induced error and the disturbances are effectively compensated for and Zeno phenomenon is successfully avoided. It is shown that all signals of the closed-loop system are globally uniformly bounded and both the attitude tracking error and the angular velocity tracking error converge to zero. Compared with conventional control schemes, the proposed scheme significantly reduces the communication burden while providing stable and accurate response for attitude maneuvers. Simulation results are presented to illustrate the effectiveness of the proposed scheme.  相似文献   

19.
《中国航空学报》2020,33(2):672-687
This paper investigates a switching control strategy for the altitude motion of a morphing aircraft with variable sweep wings based on Q-learning. The morphing process is regarded as a function of the system states and a related altitude motion model is established. Then, the designed controller is divided into the outer part and inner part, where the outer part is devised by a combination of the back-stepping method and command filter technique so that the ‘explosion of complexity’ problem is eliminated. Moreover, the integrator structure of the altitude motion model is exploited to simplify the back-stepping design, and disturbance observers inspired from the idea of extended state observer are devised to obtain estimations of the system disturbances. The control input switches from the outer part to the inner part when the altitude tracking error converges to a small value and linear approximation of the altitude motion model is applied. The inner part is generated by the Q-learning algorithm which learns the optimal command in the presence of unknown system matrices and disturbances. It is proved rigorously that all signals of the closed-loop system stay bounded by the developed control method and controller switching occurs only once. Finally, comparative simulations are conducted to validate improved control performance of the proposed scheme.  相似文献   

20.
《中国航空学报》2021,34(10):67-80
A new limit protection method based on Scheduling Command Governor (SCG) is proposed for imposing multiple constraints on a turbofan engine during acceleration process. A Gain Scheduling Controller (GSC) is designed for the transient state control and its stability proof is developed using Linear Matrix Inequalities (LMIs). The SCG is an add-on control scheme which manages engine limits effectively based on reference trajectory optimization. Unlike the traditional min–max architecture with switching logic, the SCG method utilizes the Linear Parameter Varying (LPV) closed-loop model to form a prediction of future constraint violation and per instant solves a constraint-admissible reference within an approximate Maximal Output Admissible Set (MOAS). The influence of the variation of engine dynamic characteristics and equilibrium points during transient state control is handled by the design of contractive sets. Simulation results on a turbofan engine component-level model show the applicability and effectiveness of the SCG method. Compared to the traditional min–max method, the SCG method has less conservativeness. In addition, the design of contractive sets makes conservativeness tunable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号