首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
基于控制理论的旋翼翼型优化设计   总被引:1,自引:0,他引:1  
基于粘性Navier-Stokes方程和最优控制理论原理,研究了气动/几何约束条件下多设计变量的旋翼翼型气动优化设计问题。根据给定目标函数的表达形式,在计算坐标系下推导出了相应的伴随方程和边界条件,以及梯度方程的数学表达式,并对流动控制方程和伴随方程进行了有效数值求解。综合流动方程、伴随方程、目标函数敏感性导数和优化算法,发展了一种高效旋翼翼型气动优化方法。通过典型旋翼翼型的算例验证,表明方法的有效性。  相似文献   

2.
亚、跨音速三维机翼气动外形反设计的控制理论方法   总被引:4,自引:0,他引:4  
本文进行了基于控制论的气动外形反设计方法研究,根据给定的目标函数推导了在物理空间上描述的共轭及相应的边界条件,通过构造共轭方程耗散通量项,以及使用特征线理论处理远场边界等措施,研究了共轭方程的数值求解方法,使用Hicks-Henne函数来描述设计变量扰动对机翼表面外形的影响,通过网格扰动获得度量矩阵变分来获得目标函数对设计变量的敏感性导数,优化过程使用拟牛顿优化算法,通过对流场计算、共轭方程数值求解、敏感性导数求解和优化算法这四个方面的有效结合,成功地发展出了一种机翼气动外形反设计方法,进行了机翼气动外形反设计研究,结果表明该设计方法在设计理论及可实现性方面,特别在跨音速及复杂外形气动设计方面比以往设计方法具有更好的适用性和优越性,且设计结果较为可靠,在现有计算条件下是一个好的设计方法,时间花费也较少。  相似文献   

3.
基于控制理论方法和有限元分析软件,通过将网格生成、流场计算、有限元分析、粘性伴随方程数值求解、梯度求解和拟牛顿优化算法等几方面的有效结合,研究与发展了计及静气动弹性影响的三维机翼气动优化设计方法,其中,雷诺平均Navier-Stokes方程为主控方程,气动载荷和结构静弹性变形量由气动/结构方程的耦合迭代求解得到,目标函数梯度信息由共轭方程数值求解得到。典型大展弦比机翼气动减阻设计结果表明:研究及发展的计及静气动弹性影响的三维机翼气动优化设计方法是有效的,能够有效考虑静气动弹性的影响。  相似文献   

4.
基于共轭方程法的跨音速机翼气动力优化设计   总被引:6,自引:5,他引:6  
 设计状态的机翼气动力特性是设计人员最为关心的指标, 应用控制理论设计方法进行了有升力约束情形下跨音速机翼阻力优化设计研究, 根据给定的目标函数推导了相应的共轭方程和边界条件, 研究了共轭方程的数值求解方法, 以及计算目标函数对设计变量的敏感性导数时所涉及的度量矩阵变分求解问题, 研究了流场计算、共轭方程数值求解、敏感性导数求解和拟牛顿优化算法这几个主要方面的有效结合问题, 发展出了一种跨音速机翼气动力优化设计方法, 进行了跨音速机翼气动力优化设计研究验证, 优化后机翼气动力特性有一定程度的改善, 阻力系数能减少20%左右, 而升力系数有所增大, 说明所发展的设计方法是成功的, 该设计方法在跨音速及复杂外形气动设计方面比以往设计方法具有更好的适用性和优越性。  相似文献   

5.
机翼的气动特性从根本上决定了飞机巡航状态下的气动特性,经过良好设计的机翼会明显地提升全机的气动特性。连续共轭方程方法由于其求解梯度的计算量与设计变量数目无关,可以对复杂构型进行有效的优化设计。本文采用连续共轭方程方法对粘性条件下的机翼气动外形进行了优化设计。采用有限体积法进行流动控制方程和共轭方程的数值空间离散,多步Runge-Kutta方法进行时间推进,对于某三维机翼进行了有效的气动优化设计。  相似文献   

6.
将连续伴随方程法与自由变形技术(Free Form Deform-FFD)相结合开展了跨声速机翼气动外形优化设计方法研究。采用Bernstein基函数建立了空间FFD参数化方法,并应用基于控制理论的连续伴随方程方法建立了目标函数对于待优化几何外形的梯度求解模式,将几何外形参数化方法、连续伴随方法以及CFD数值模拟技术相结合,研究、构建了适合跨声速机翼的气动外形优化设计系统。利用该系统对ONERA M6机翼及某型民用客机机翼进行了气动减阻设计,算例验证表明该方法应用于跨声速机翼气动减阻设计效果明显,并且能较好的保持几何表面连续性和光滑性。  相似文献   

7.
基于N-S方程和离散共轭方法的气动外形设计   总被引:3,自引:0,他引:3  
快速准确的目标函数梯度计算方法是基于梯度信息的优化设计的关键技术之一。采用离散共轭方法计算目标函数关于设计变量的梯度,流动控制方程为三维N-S方程。对于离散共轭方程和流动控制方程均采用LU-SGS方法时间推进求解。检验了离散共轭方法计算梯度的准确性,利用该方法进行了机翼的优化设计与反设计,都获得了较好的结果。算例证明了本文方法可靠性好,效果令人满意。  相似文献   

8.
基于控制理论的Euler方程翼型减阻优化设计   总被引:3,自引:0,他引:3  
在Jameson的控制论气动优化设计思想下,应用Euler方程研究了翼型的反设计和减阻问题。设计过程中的梯度是通过求解一个伴随偏微分方程而得到的,每个设计迭代只需求解一次Euler方程和一次伴随方,一与设计变量数无关。在具体数值执行中:①利用分部积分将目标函数变分的计算转化成了类似于计算Euler方程残值的形式,节省了机器时间;②根据控制理论的要求,将减阻问题转化成了相应地修改伴随方程的物面边界条件和目标函数的变分表达,使问题得到了简化;③利用特征不变量分析法,处理了伴承方程的物面和远场边界条件。设计算例证明了本文方法可靠性好、收敛快、大大节约设计时间。  相似文献   

9.
 进行了基于黏性伴随方法和Navier Stokes方程的跨声速机翼气动优化设计研究。分别推导了适用于三维跨声速机翼气动反设计和减阻设计的黏性伴随方程、边界条件和梯度求解表达式,并研究了伴随方程的数值求解方法。通过将网格生成、流场计算、黏性伴随方程数值求解、梯度求解和拟牛顿优化算法等几方面的有效结合,发展了一种跨声速机翼气动优化设计方法。为了提高计算效率,将多重网格方法应用到方程的数值求解中来加速收敛。跨声速机翼反设计和减阻设计算例验证了本文所发展的方法的正确性。采用本文的方法进行优化设计,一般通过20~30次迭代就能得到满意的结果。  相似文献   

10.
基于N-S方程和离散共轭方法的气动设计方法研究   总被引:7,自引:0,他引:7  
对于基于梯度信息的优化设计方法,很重要的一点是快速准确获得目标函数对设计变量的梯度.本文采用离散共轭方法计算目标函数关于设计变量的梯度,流动控制方程为N-S方程.对于离散共轭方程和流动控制方程均采用LU-SGS方法求解.算例表明,对于亚声速和跨声速两种情况,该方法都能快速准确地获得升力和阻力关于设计变量的梯度.本文采用该方法进行了翼型优化设计,成功地减弱了激波,降低了总阻力.算例证明了本文方法可靠性好、收敛快, 特别适合工程实际.  相似文献   

11.
杜磊  宁方飞 《航空学报》2012,33(4):597-606
 对于给定压力分布的黏性气动反问题,考虑到壁面微小扰动造成的压力变化主要由势流作用引起,因此可以简化用以获得目标函数对设计变量敏感性导数的共轭方程。将黏性流场插值到粗网格中作为彻体力模型方程的解,则其相应的共轭方程将以简单的源项取代原方程中复杂的黏性项。由于在粗网格中求解,网格数减少,同时收敛速度加快,简化的共轭方程计算时间可以减少到黏性方程的十分之一。典型的算例结果表明,对于附着的边界层流动简化方法计算得到的敏感性导数具有较高的精度,能够有效完成反问题设计且减少总的计算耗时。  相似文献   

12.
低速叶型气动反问题设计方法   总被引:2,自引:1,他引:1  
杜磊  宁方飞 《航空学报》2011,32(7):1180-1188
 低马赫数不可压流动中声速与流速大小差别巨大,采用基于可压缩流动控制方程的计算格式求解流场时,由于数值黏性的污染,解的精度低且收敛性差,通常可使用时间预处理技术来解决这一问题。在基于控制理论的优化方法中,共轭方程的Jacobian矩阵和流动方程的系数矩阵相似,因而在低流动马赫数下,求解共轭方程存在着与求解流动方程相同的数值污染和数值刚性问题。首先推导了带有预处理的Roe格式,然后发展了适合全速度流动的共轭方程求解方法,最后选取翼型和叶栅两个典型算例进行了验证。计算结果表明所发展的方法可很好地用于低马赫数时的气动反问题设计。  相似文献   

13.
基于控制理论的压气机叶型数值优化方法   总被引:1,自引:0,他引:1  
将基于控制理论的气动优化方法应用于轴流压气机叶型设计.以Euler方程作为流动控制方程,具体推导得出了其相应的伴随方程,分析了边界条件,并给出求解方法.以给定压力分布作为目标函数,将参数化叶型作为设计变量,在求得目标函数对设计变量的梯度信息后,结合BFGS优化算法得到优化方向,更新设计变量完成叶型的优化设计.通过三个算例验证了该叶型优化设计方法的有效性.   相似文献   

14.
基于伴随方法的机翼多设计点气动反设计方法   总被引:1,自引:0,他引:1  
针对三维机翼多点多约束气动反设计问题,基于伴随理论方法和粘性流雷诺平均N-S方程,通过粘性流数值模拟、伴随方程与梯度精确数值求解、计算网格高效算法及梯度类优化算法等有效结合,并采用考虑多设计点梯度权重系数的并行计算近似模式,开展了一种三维机翼多设计点多约束气动反设计方法研究,进行了典型算例验证。研究表明:所发展的机翼多设计点气动反设计方法具有较好的鲁棒性及优化效率。  相似文献   

15.
An optimal shape design approach is presented for a subsonic S-shaped intake geometry using aerodynamic sensitivity analysis. Sensitivity analysis is performed for the three-dimensional Navier–Stokes equations coupled with two-equation turbulence models using a discrete adjoint method. For code validation, the result of the flow solver is compared with experimental data and other computational results. Through the study on turbulence models and grid refinement, results from several turbulence models are compared and the minimal number of grid points yielding an accurate numerical solution is obtained. And, the adjoint sensitivity code is also validated by the comparison with complex step derivative results. To obtain a sufficient and flexible design space, NURBS equations are employed as a geometric representation and a new grid modification technique, Least Square NURBS Grid Approximation is applied. With the verified flow solver, sensitivity analysis code and geometric modification technique, the optimization of the S-shaped intake is carried out and the enhancement of overall intake performance is achieved. In addition, the off-design performance of a designed S-shaped intake is tested to confirm the robustness of the current design approach. As a result, the capability and efficiency of the present design tools are successfully demonstrated in three-dimensional high Reynolds subsonic intake design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号