首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Lithium-ion batteries have become the third-generation space batteries and are widely utilized in a series of spacecraft. Remaining Useful Life (RUL) estimation is essential to a spacecraft as the battery is a critical part and determines the lifetime and reliability. The Relevance Vector Machine (RVM) is a data-driven algorithm used to estimate a battery’s RUL due to its sparse feature and uncertainty management capability. Especially, some of the regressive cases indicate that the RVM can obtain a better short-term prediction performance rather than long-term prediction. As a nonlinear kernel learning algorithm, the coefficient matrix and relevance vectors are fixed once the RVM training is conducted. Moreover, the RVM can be simply influenced by the noise with the training data. Thus, this work proposes an iterative updated approach to improve the long-term prediction performance for a battery’s RUL prediction. Firstly, when a new estimator is output by the RVM, the Kalman filter is applied to optimize this estimator with a physical degradation model. Then, this optimized estimator is added into the training set as an on-line sample, the RVM model is re-trained, and the coefficient matrix and relevance vectors can be dynamically adjusted to make next iterative prediction. Experimental results with a commercial battery test data set and a satellite battery data set both indicate that the proposed method can achieve a better performance for RUL estimation.  相似文献   

2.
Remaining useful life(RUL) prognostics is a fundamental premise to perform conditionbased maintenance(CBM) for a system subject to performance degradation. Over the past decades,research has been conducted in RUL prognostics for aeroengine. However, most of the prognostics technologies and methods simply base on single parameter, making it hard to demonstrate the specific characteristics of its degradation. To solve such problems, this paper proposes a novel approach to predict RUL by means of superstatistics and information fusion. The performance degradation evolution of the engine is modeled by fusing multiple monitoring parameters, which manifest non-stationary characteristics while degrading. With the obtained degradation curve,prognostics model can be established by state-space method, and then RUL can be estimated when the time-varying parameters of the model are predicted and updated through Kalman filtering algorithm. By this method, the non-stationary degradation of each parameter is represented, and multiple monitoring parameters are incorporated, both contributing to the final prognostics. A case study shows that this approach enables satisfactory prediction evolution and achieves a markedly better prognosis of RUL.  相似文献   

3.
基于随机Wiener过程的航空发动机剩余寿命预测   总被引:9,自引:2,他引:7  
针对目前剩余寿命(RL)预测方法没有综合考虑发动机个体性能退化的差异性和多阶段性的问题,提出了基于多阶段性能退化模型预测航空发动机剩余寿命的方法。首先,该方法采用多阶段Wiener过程对航空发动机进行退化建模,并假设退化模型参数服从随机分布来描述发动机个体的差异性。然后,根据历史性能退化数据与历史失效时间数据,利用期望最大化算法对模型参数的先验分布进行估计。当获得单台发动机的实时退化数据后,使用Bayesian方法对模型参数进行更新,从而实时更新航空发动机的RL分布,最终实现对单台航空发动机的RL预测。实验结果表明,该方法预测精度较高,能为航空发动机维修计划的制定提供依据。  相似文献   

4.
An accurate estimation of the remaining useful life (RUL) not only contributes to an effective application of an aviation piston pump, but also meets the necessity of condition based maintenance (CBM). For the current RUL evaluation methods, a model-based method is inappropriate for the degradation process of an aviation piston pump due to difficulties of modeling, while a data-based method rarely presents high-accuracy prediction in a long period of time. In this work, an adaptive-order particle filter (AOPF) prognostic process is proposed aiming at improving long-term prediction accuracy of RUL by combining both kinds of methods. A dynamic model is initialized by a data-driven or empirical method. When a new observation comes, the prior state distribution is approximated by a current model. The order of the current model is updated adaptively by fusing the information of the observation. Monte Carlo simulation is employed for estimating the posterior probability density function of future states of the pump’s degradation. With updating the order number adaptively, the method presents a higher precision in contrast with those of traditional methods. In a case study, the proposed AOPF method is adopted to forecast the degradation status of an aviation piston pump with experimental return oil flow data, and the analytical results show the effectiveness of the proposed AOPF method.  相似文献   

5.
多传感器监测飞机部件非线性退化评估   总被引:1,自引:0,他引:1  
薛小锋  田晶  何树铭  冯蕴雯 《航空学报》2021,42(5):524342-524342
飞机部件一般采用多传感器进行状态监控,针对退化过程具有非线性特征的民机典型部件剩余寿命(RUL)预测及评估问题,首先建立了部件性能参数的一般非线性Wiener退化过程,推导出基于多传感器监测数据的剩余寿命预测框架和概率密度函数,随后利用状态空间模型进行隐退化状态估计并同时利用最大期望算法(EM)实现参数递推估计,最后形成了飞机部件多传感器监测下的剩余寿命非线性退化评估方法。通过数值仿真案例和民航发动机剩余寿命预测案例,对比线性退化模型和基于单一传感器监测数据的非线性退化模型,验证了所提方法在提高剩余寿命预测精度的有效性,可为飞机及其部件的剩余使用寿命预测和视情维护决策提供技术支撑。  相似文献   

6.
王玺  胡昌华  任子强  熊薇 《航空学报》2020,41(2):223291-223291
针对航空发动机在性能衰减过程中普遍存在的非线性和三源不确定性问题,提出了一种基于非线性Wiener过程的航空发动机性能衰减建模与剩余寿命(RUL)预测方法。首先,为解决目前大多数剩余寿命预测方法中潜在假设的局限性,即当前时刻估计的漂移系数与上一时刻漂移系数的后验估计完全相等,在状态空间模型的框架下建立了一类新的同时考虑非线性和三源不确定性的性能衰减模型,并在首达时间下推导出剩余寿命的分布。然后,针对新研发航空发动机缺乏历史数据和先验信息的问题,提出了一种基于Kalman滤波和条件期望最大化(ECM)算法的参数估计方法,使得估计的模型参数不依赖于历史数据量。同时能够在获得一个新的性能衰减数据后,实现对模型参数的自适应估计和在线更新,进而实时地更新航空发动机的剩余寿命分布。实验结果表明,本文方法可以有效地提高剩余寿命预测的准确性,能为航空发动机的维修决策提供可靠的依据。  相似文献   

7.
For critical engineering systems such as aircraft and aerospace vehicles, accurate Remaining Useful Life(RUL) prediction not only means cost saving, but more importantly, is of great significance in ensuring system reliability and preventing disaster. RUL is affected not only by a system's intrinsic deterioration, but also by the operational conditions under which the system is operating. This paper proposes an RUL prediction approach to estimate the mean RUL of a continuously degrading system under dynamic operational conditions and subjected to condition monitoring at short equi-distant intervals. The dynamic nature of the operational conditions is described by a discrete-time Markov chain, and their influences on the degradation signal are quantified by degradation rates and signal jumps in the degradation model. The uniqueness of our proposed approach is formulating the RUL prediction problem in a semi-Markov decision process framework, by which the system mean RUL can be obtained through the solution to a limited number of equations. To extend the use of our proposed approach in real applications, different failure standards according to different operational conditions are also considered. The application and effectiveness of this approach are illustrated by a turbofan engine dataset and a comparison with existing results for the same dataset.  相似文献   

8.
《中国航空学报》2016,(3):779-788
An aviation hydraulic axial piston pump’s degradation from comprehensive wear is a typical gradual failure model. Accurate wear prediction is difficult as random and uncertain char-acteristics must be factored into the estimation. The internal wear status of the axial piston pump is characterized by the return oil flow based on fault mechanism analysis of the main frictional pairs in the pump. The performance degradation model is described by the Wiener process to predict the remaining useful life (RUL) of the pump. Maximum likelihood estimation (MLE) is performed by utilizing the expectation maximization (EM) algorithm to estimate the initial parameters of the Wiener process while recursive estimation is conducted utilizing the Kalman filter method to estimate the drift coefficient of the Wiener process. The RUL of the pump is then calculated accord-ing to the performance degradation model based on the Wiener process. Experimental results indi-cate that the return oil flow is a suitable characteristic for reflecting the internal wear status of the axial piston pump, and thus the Wiener process-based method may effectively predicate the RUL of the pump.  相似文献   

9.
High-cost equipment is often reused after maintenance, and whether the information before the maintenance can be used for the Remaining Useful Life (RUL) prediction after the maintenance is directly determined by the consistency of the degradation pattern before and after the maintenance. Aiming at this problem, an RUL prediction method based on the consistency test of a Wiener process is proposed. Firstly, the parameters of the Wiener process estimated by Maximum Likelihood Estimation (MLE) are proved to be biased, and a modified unbiased estimation method is proposed and verified by derivation and simulations. Then, the h statistic is constructed according to the reciprocal of the variation coefficient of the Wiener process, and the sampling distribution is derived. Meanwhile, a universal method for the consistency test is proposed based on the sampling distribution theorem, which is verified by simulation data and classical crack degradation data. Finally, based on the consistency test of the degradation model, a weighted fusion RUL prediction method is presented for the fuel pump of an airplane, and the validity of the presented method is verified by accurate computation results of real data, which provides a theoretical and practical guidance for engineers to predict the RUL of equipment after maintenance.  相似文献   

10.
This paper gives a review of the papers presented at the IEEE 17th Annual Battery Conference on Applications and Advances, Long Beach, CA, USA, 2002. The topics covered are: Li batteries for satellites, capacity fade of Li-ion cells cycled at different temperatures, Ni-H/sub 2/ battery lifetime, batteries for Mars-exploring vehicles, Li-ion cell performance enhancement at low temperatures, navy service batteries, and US Army man portable applications and mobile power challenges.  相似文献   

11.
多铺层碳纤维蜂窝板模型修正   总被引:1,自引:0,他引:1  
 蜂窝板是现代飞行器的主要承力结构,通过分析各形式响应面适用范围,提出Linear-and-Gaussian组合核支持向量机(SVM)响应面和基于分组控制策略的改进粒子群优化(IPSO)算法。用ANSYS的SHELL91单元建立多铺层碳纤维蜂窝板的有限元模型(FEM),并通过正交试验设计和F值检验确定待修正结构参数,构造Linear-and-Gaussian响应面以拟合待修正结构参数与蜂窝板模态频率的关系并检验响应面模型有效性。最后,用基于分组控制策略的IPSO算法对响应面模型中的结构参数进行修正,修正后参数代入原有限元模型得到修正模型。通过对修正前后模型模态频率与基准模型模态频率在测试频段内外的对比,证实了修正后模型具有良好的复现能力和预测能力。  相似文献   

12.
《中国航空学报》2016,(3):662-674
Dynamic time-varying operational conditions pose great challenge to the estimation of system remaining useful life (RUL) for the deteriorating systems. This paper presents a method based on probabilistic and stochastic approaches to estimate system RUL for periodically moni-tored degradation processes with dynamic time-varying operational conditions and condition-specific failure zones. The method assumes that the degradation rate is influenced by specific oper-ational condition and moreover, the transition between different operational conditions plays the most important role in affecting the degradation process. These operational conditions are assumed to evolve as a discrete-time Markov chain (DTMC). The failure thresholds are also determined by specific operational conditions and described as different failure zones. The 2008 PHM Conference Challenge Data is utilized to illustrate our method, which contains mass sensory signals related to the degradation process of a commercial turbofan engine. The RUL estimation method using the sensor measurements of a single sensor was first developed, and then multiple vital sensors were selected through a particular optimization procedure in order to increase the prediction accuracy. The effectiveness and advantages of the proposed method are presented in a comparison with exist-ing methods for the same dataset.  相似文献   

13.
Particle filtering (PF) is being applied successfully in nonlinear and/or non-Gaussian system failure prognosis. However, for failure prediction of many complex systems whose dynamic state evolution models involve time-varying parameters, the traditional PF-based prognosis framework will probably generate serious deviations in results since it implements prediction through iterative calculation using the state models. To address the problem, this paper develops a novel integrated PF-LSSVR framework based on PF and least squares support vector regression (LSSVR) for nonlinear system failure prognosis. This approach employs LSSVR for long-term observation series prediction and applies PF-based dual estimation to collaboratively estimate the values of system states and parameters of the corresponding future time instances. Meantime, the propagation of prediction uncertainty is emphatically taken into account. Therefore, PF-LSSVR avoids over-dependency on system state models in prediction phase. With a two-sided failure definition, the probability distribution of system remaining useful life (RUL) is accessed and the corresponding methods of calculating performance evaluation metrics are put forward. The PF-LSSVR framework is applied to a three-vessel water tank system failure prognosis and it has much higher prediction accuracy and confidence level than traditional PF-based framework.  相似文献   

14.
为了实现航空发动机燃油系统的安全状态监测和健康管理,开展了燃油系统性能衰退检测和剩余使用寿命估计方面的研究。以燃油系统燃油计量装置为例,分析了其主要的性能衰退模式,设计了基于电流-速度数据的健康指标(HIs)选取方案,并考虑环境及模型参数不确定性,进行模型不确定性仿真,基于健康数据与性能衰退数据间的马氏距离对部件性能衰退进行检测。提出了基于随机森林-支持向量回归(RF-SVR)的剩余使用寿命(RUL)估计方法,利用通过RF特征选择优化的SVR模型实现部件RUL估计。最后基于某型民用涡扇发动机机械液压模型仿真数据对该方法进行了验证,结果表明:该方法的性能衰退检测虚警率及漏报率低于2%,RUL估计误差低于3%,可为航空发动机燃油系统的预测性维护提供参考。   相似文献   

15.
胡伟杰  黄增辉  刘学军  吕宏强 《航空学报》2021,42(4):524093-524093
在导弹的初期设计阶段,通常需要对导弹的气动性能进行快速粗略评估。针对传统工程估算软件计算精度低和CFD方法计算代价大的缺陷,提出一种基于高斯过程回归(GPR)代理模型快速预测典型导弹气动性能的方案。以导弹外形参数和攻角作为模型输入,升力系数、阻力系数和力矩系数作为模型输出,对GPR模型的气动性能预测结果进行分析。首先,与其他常用代理模型的预测精度对比,GPR模型对3种系数的预测误差分别仅为0.24%、0.36%和0.36%,高于其他代理模型的预测精度。其次,考虑GPR模型核函数选择严重依赖人工先验知识的问题,采用了一种自动核构造算法,无需先验知识即可从数据中自动学习核函数。将该算法嵌入GPR框架中,与传统GPR模型比较,实验结果表明:基于该算法的GPR模型对3种系数的预测误差分别降低到0.10%、0.22%和0.17%。最后,给出导弹气动性能快速预测的应用实例,结果表明所提出的GPR模型的导弹气动性能预测方案是有效的,能够满足设计初期快速且精确的气动性能预测需求。  相似文献   

16.
多退化变量下基于Copula函数的陀螺仪剩余寿命预测方法   总被引:1,自引:0,他引:1  
针对惯性导航系统中陀螺仪多退化变量条件下的剩余寿命(RUL)预测问题,提出了一种基于Copula函数的多退化变量剩余寿命预测方法。首先,针对退化变量间不同的退化轨迹,采用不同的方法进行退化建模,并对于陀螺漂移系数样本标准差数据波动性随时间递增的特性,提出了一种方差时变的正态随机过程退化建模方法,得到了陀螺仪剩余寿命的边缘分布函数。然后,通过Copula函数来描述退化变量之间的相关性,将得到的剩余寿命的边缘分布进行融合,得到了陀螺仪剩余寿命的联合分布函数。最后,通过陀螺仪实例分析验证了方法的适用性和可行性。  相似文献   

17.
As the key part of Prognostics and Health Management (PHM), Remaining Useful Life (RUL) estimation has been extensively investigated in recent years. Current RUL estimation studies considering the intervention of imperfect maintenance activities usually assumed that maintenance activities have a single influence on the degradation level or degradation rate, but not on both. Aimed at this problem, this paper proposes a new degradation modeling and RUL estimation method taking the influence of imperfect maintenance activities on both the degradation level and the degradation rate into account. Toward this end, a stochastic degradation model considering imperfect maintenance activities is firstly constructed based on the diffusion process. Then, the Probability Density Function (PDF) of the RUL is derived by the convolution operator under the concept of First Hitting Time (FHT). To implement the proposed RUL estimation method, the Maximum Likelihood Estimation (MLE) is utilized to estimate the degradation related parameters based on the Condition Monitoring (CM) data, while the Bayesian method is utilized to estimate the maintenance related parameters based on the maintenance data. Finally, a numerical example and a practical case study are provided to demonstrate the superiority of the proposed method. The experimental results show that the proposed method could greatly improve the RUL estimation accuracy for the degrading equipment subjected to imperfect maintenance activities.  相似文献   

18.
航空发动机气路故障诊断的SANNWA-PF算法   总被引:1,自引:0,他引:1       下载免费PDF全文
许梦阳  黄金泉  鲁峰 《航空动力学报》2017,32(10):2516-2525
针对航空发动机非线性、非高斯的特点,提出一种用于航空发动机气路故障诊断的自适应神经网络权值调整粒子滤波(SANNWA PF)算法。该算法根据粒子分布情况确定分裂和调整的粒子数目,进而根据粒子权重采用正态分布的方式进行分裂,采用反向传插(BP)神经网络进行权值调整,缓解了粒子的退化和贫化,具有更强的自适应性能和跟踪能力。通过一维非线性跟踪模型和航空发动机气路故障诊断仿真研究表明:SANNWA PF算法具有良好的非高斯性能,相对粒子滤波一维非线性追踪模型估计精度提高约21%,航空发动机气路故障诊断在高斯噪声和非高斯噪声下分别提高约30%和26%,诊断速度分别提高约7倍和10倍。   相似文献   

19.
A review and comparison of the weights, sizes, and costs of nuclear and non-nuclear spacecraft power systems is presented and discussed. Nuclear power systems include the range below 10 kW, with an electrical output to weight ratio of 0.5 to 1.0 pounds per watt. Comparisons show that primary batteries are lighter for short-duration missions of a few hours; fuel cells are lighter for durations of one to two months; and solar-cell/secondary battery combinations are to be preferred when sunlight is adequate.  相似文献   

20.
The performance advantage of Li-ion batteries versus NiCd and NiMH technology has created a worldwide demand for Li-ion cells that is much greater than current manufacturing capacity. This is keeping prices high and supplies scarce-a situation expected to continue for at least several more years. Multichemistry chargers, while challenging to design, keep price-performance points flexible and guard against interruptions in supply. This paper surveys the design issues in implementing chargers that handle NiCd, NiMH, or Li-ion cells interchangeably  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号