首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用加工硬化理论探讨了SAE9310钢在大应变条件下的加工硬化率曲线及动态再结晶的拐点判据,根据在变形温度为900~1200℃、应变速率为0.01~10s-1条件下的等温恒应变速率压缩实验,采用拐点判据方法和金相观察手段,研究了SAE9310钢发生动态再结晶的临界条件,建立了该钢的动态再结晶状态图。结果表明,在本实验条件下,SAE9310钢的流变曲线呈现两种特征类型;发生动态再结晶的临界应变εc和临界应力αc均随应变速率的增大和变形温度的降低而增加;临界应变与峰值应变之间满足εc/εp=0.30~0.42;随着Z参数的增加,临界变形量增大,材料发生动态再结晶变得困难。  相似文献   

2.
利用Gleeble-1500D热模拟试验机对40%SiC_P/Al-Cu复合材料进行压缩实验,研究其在温度为350~500℃、应变速率为0.01~10 s~(-1)条件下的高温塑性变形行为。由实验得出变形过程中的应力-应变曲线,采用加工硬化率处理方法对应力-应变数据进行处理,结合lnθ-ε曲线的拐点和(-α(lnθ)/αε)-ε曲线最小值的判据,研究该复合材料动态再结晶临界条件。结果表明:40%SiC_P/Al-Cu复合材料的应力-应变曲线主要以动态再结晶软化机制为特征,峰值应力(σ_p)随变形温度的降低或应变速率的升高而增加;该材料的lnθ-ε曲线出现拐点,(-α(lnθ)/αε)-ε曲线出现最小值;临界应变(ε_c)随变形温度的升高与应变速率的降低而减小,且临界应变与峰值应变(εp)之间具有相关性,即ε_c=0.528εp;临界应变与Zener-Hollomon参数(Z)之间的函数关系为ε_c=4.58×10~(-3)Z~(0.09)。透射电镜观察显示应变为0.06时(变形温度为400℃,应变速率为10 s~(-1))已经发生动态再结晶,应变为0.2时,动态再结晶晶粒充分长大。  相似文献   

3.
TA15钛合金高温压缩变形行为与组织研究   总被引:1,自引:0,他引:1  
采用圆柱试样在Gleeble3500型热模拟机上对TA15钛合金进行等温热压缩实验研究。通过实验获得了该种材料在不同工艺参数下的真应力-应变曲线以及其变形过程中的微观组织形貌,并采用电子背散射衍射(EBSD)技术对TA15合金的热压缩变形织构进行研究。实验结果表明,TA15钛合金在高温变形时,其他工艺参数相同下,变形温度降低,应变速率升高,流动应力升高。变形过程中,在相变点以下,软化机制以动态再结晶为主,相变点以上软化机制主要以动态回复为主。不同变形条件下分别存在再结晶织构和形变织构。  相似文献   

4.
研究了TiBw/TA15复合材料板材在900~960℃、5×10-4~10-2s-1条件下的超塑变形行为。结果表明,TiBw/TA15复合材料流变应力随拉伸温度的升高和应变速率的减小而降低,在940℃、5×10-3s-1变形条件下获得的最大超塑性伸长率为439%。利用Zener-Hollomn参数和Arrhenius方程所建立的峰值应力本构方程为ε·=3.55×108[sinh(2.0×10-2σ)]1.99×exp(-6.381×105/RT),其变形激活能Q=638.1kJ/mol。复合材料超塑性变形组织与拉伸温度和应变速率密切相关。高温低应变速率有利于基体α相的动态再结晶以及晶须与基体处孔洞的愈合,低温高应变速率下,孔洞更易萌生于增强相与基体结合界面的端部。动态再结晶对复合材料超塑性的发挥起着关键作用。  相似文献   

5.
采用应变速率循环法对TA15钛合金进行三组高温超塑性拉伸试验,变形温度区间为850~950℃,应变速率循环区间为5×10-6~5×10-4s-1。分析拉伸试验数据后,计算出TA15钛合金动态再结晶激活能Q,结合金相组织分析得出其热变形过程中发生了动态再结晶的结论;并利用Arrhenius模型构建超塑性本构方程,应用origin数据处理软件进行数据分析,求得TA15钛合金高温条件下的超塑性本构方程。运用1stopt软件修正了该本构方程,使其精度达到99.3%。结果表明,TA15钛合金的流动应力对变形温度较为敏感,随着温度的升高,流变应力逐渐减小,软化机制愈发明显,且在900℃附近的超塑性较好,伸长率达到了846%。  相似文献   

6.
通过Gleeble 3800热模拟试验机对TB17钛合金在变形温度860~980℃、应变速率为0.001~1 s~(-1)、最大变形量为70%下高温变形行为进行研究。通过材料参数与真应变之间的关系,利用Arrhenious本构方程关系式和Z参数建立流变应力和变形温度、应变速率和真应变三者之间的本构关系,并对组织进行分析。结果表明:TB17钛合金在应变速率为0.001~0.01 s~(-1)、变形温度为890~980℃下更容易发生连续动态再结晶,而在应变速率为0.1~1 s~(-1)下主要发生不连续动态再结晶;误差分析结果显示计算值与实测值平均相对误差为6%,说明建立的本构关系模型具有较高的准确度。  相似文献   

7.
TC4-DT钛合金高温热变形行为研究   总被引:1,自引:0,他引:1  
利用Gleeble-3500型热模拟实验机,研究了TC4-DT损伤容限型钛合金在温度850℃~1000℃、应变速率0.01~10s-1、变形程度为40%~70%条件下的热变形行为,分析了该合金的流变应力行为及微观组织演变规律,并建立了本构关系模型。研究结果表明,TC4-DT合金在950℃以下的较低温度变形时应力软化现象非常明显,变形机制和热变形激活能不同于950℃以上的较高温度变形机制;在950℃以上高温度变形时,低应变速率(如ε=0.01s-1)促进了动态再结晶行为的发生,而在较高的应变速率(如ε=10s-1)时,一般只发生动态回复现象,动态再结晶行为受抑制。  相似文献   

8.
进行了TA15合金超塑拉伸试验,在温度920℃和应变速率5.25×104s-1时,TA15合金的最大延伸率约为1100%,其应变速率敏感性指数约为0.57.在较佳超塑变形条件930℃和应变速率5.25×10-4s-1附近,TA15合金的超塑本构方程为σ=949(ε) 0.55.对TA15四层板结构超塑成形过程进行了有限元分析,获得了压力p-时间t曲线.在T =930℃和应变速率5.25×10-4s-1下,成功进行了TA15四层板结构SPF/DB成形试验,试验件的整体质量良好,无沟槽等缺陷,金相组织观测表明,TA15四层SPF/DB试验件扩散连接质量优良.  相似文献   

9.
 测试了Ti-10V-2Fe-3Al合金在β区850℃~950℃、ε=5×10~(-3)~10s~(-1)条件下的压缩真应力-真应变曲线。研究了变形组织。结果表明:在850℃~950℃、ε=10~(-1)~10s~(-1)范围内变形,动态回复是主要软化机制,其σ-ε曲线为动态回复型,变形后的组织为拉长晶粒。对所得的σ-ε曲线进行了数学分析,得出了流变应力模型。  相似文献   

10.
通过热压缩试验研究了TA7钛合金在变形温度850~1000℃、应变速率0.001~0.1s-1条件下的流变应力变化规律,计算并建立了描述TA7钛合金高温变形特性的本构方程。结果表明:变形温度和应变速率对TA7钛合金流变应力影响显著,随变形温度升高和变形速率的降低,相同变形程度下合金的流变应力显著降低,并且在较低的应变下合金即可达到稳态流变状态。  相似文献   

11.
用高纯α-Fe在GLEEBLE-1500热模拟机上率进行了热压缩试验。变形温度分别为550℃,700℃,800℃和900℃,应变速率分别为0.001s~(-1),0.01s~(-1),0.1s~(-1),1s~(-1)和10s~(-1)。对其热压缩过程中的显微结构变化及真应力-真应变曲线进行的研究结果表明,形变温度的增加和应变速率降低有利于动态再结晶的进行;对动态再结晶与Z参数关系的研究结果表明,在一定的Z参数范围内即25<1nZ<37,高纯α-Fe可以发生动态再结晶,并给出动态再结晶图。  相似文献   

12.
通过等温恒应变速率热模拟压缩试验,研究了一种铸态组织的阻燃钛合金在变形温度900~1200℃,应变速率0.001~1s-1下的高温流变应力和组织演变,计算了变形激活能及应力指数,并给出了该合金变形的本构方程.结果表明,此种阻燃钛合金高温变形是扩散控制的过程,软化机制以动态回复为主,但在应变速率较高时会发生项链状动态再结晶,而在应变速率较低时会发生连续再结晶,合金中的碳化物形貌在高温变形过程中也会发生转变.  相似文献   

13.
TA15钛合金的动态热压缩行为及其机理研究   总被引:16,自引:1,他引:15  
为了研究TA15(Ti-6Al-2Zr-1Mo-1V)钛合金的动态热变形行为,采用圆柱试样在Gleeble-1500热模拟机上进行了恒应变速率压缩变形试验(变形温度550~1000℃,变形速率0.01~1s-1),计算了材料的变形激活能Q并观察了热变形组织。结果表明,材料的流动应力随着变形温度的升高而降低,随应变速率的提高而增大。材料的流变行为表现为加工硬化(550~600℃)、动态再结晶(650~900℃)、动态回复(950~1000℃)三种类型。材料在(α+β)相区的热变形激活能为517kJ/mol,β相区为205kJ/mol。流动应力曲线、变形激活能以及变形组织分析表明,在α+β相区动态再结晶是材料的主要软化机制,而在β相区软化机制则以动态回复为主。随着变形速率的降低,在(α+β)双相区动态再结晶进行得更加充分,而在β相区则动态回复的亚晶趋于长大。  相似文献   

14.
采用Gleeble-3800型热模拟试验机研究了高铝Ni3Al基合金在变形温度为1200~1240℃,应变速率为0.01~1s-1条件下的热压缩变形,结果表明:在应变速率为0.01s-1时,高铝Ni3Al基合金对应的热变形本构方程为σ=28.57(lnε+6.72×105/RT-44.08),而当应变速率为0.1s-1和1s-1时,热变形本构方程为σ=28.57(lnε+1.28×106/RT-92.76)。变形过程中只有γ’相发生不同程度上回溶,但未发生动态再结晶。合金的最佳变形区间位于变形温度为1200~1215℃,应变速率为0.01s-1范围内;而当提高速率至1s-1附近,γ’相中塞积的位错容易造成单相γ’区中β/γ’界面的开裂,对应变形过程中的"失稳区"。  相似文献   

15.
对TC6钛合金在800~900℃温度区间内,分别进行应变速率为0.0001~0.1 s-1的恒应变速率法拉伸实验和最大m值法超塑性拉伸实验,获得拉伸过程应力-应变曲线,并采用金相显微镜对拉伸后断口附近显微组织进行分析。结果表明:TC6合金表现出良好的超塑性性能,随着应变速率或温度的升高,伸长率先增大后减小,恒应变速率拉伸时,在温度850℃、应变速率0.001 s-1条件下伸长率可达到993%;在同一变形温度下最大m值法拉伸能获得比恒应变速率法更好的超塑性,850℃时伸长率达到1353%;TC6合金在超塑性变形过程中发生了明显的动态再结晶,并随着应变速率和温度的升高动态再结晶行为增强。  相似文献   

16.
采用Gleeble-1500热模拟机对新型第三代镍基粉末高温合金FGH98Ⅰ在不同变形温度(950~1150℃)及不同变形速率(0.0003~1s-1)下高温变形行为进行了研究,绘制了动态RTT曲线,并建立了合金的热变形本构关系。结果表明:合金的流变应力随变形温度的升高和应变速率的降低而降低,当变形温度≤1100℃、应变速率≥0.0003s-1时,其流变应力随应变量增加呈动态再结晶特征;在应变速率≤0.01s-1的高温变形条件下,其动态再结晶的开始时间与变形温度无线性关系;实验验证了采用考虑应变量的双曲正弦模型能较好地反映合金在热变形过程中流变应力的变化规律。  相似文献   

17.
在Gleeble-3500热模拟试验机上对粉末冶金TiAl合金进行热压缩试验,变形温度为1050~1200℃,,应变率0.001~0.1 s-1,工程应变量为50%,研究其在高温压缩变形中的流变应力行为。研究结果表明:在实验范围内,粉末冶金TiAl合金在热压缩变形过程中发生了明显的动态再结晶,其流变应力随应变速率的增大而增大,随变形温度的升高而降低;粉末冶金TiAl合金热压缩变形过程的流变行为可用包含Arrhenius项的Zener-Hollomon参数来描述,所获得的峰值应力表达式为:σ=90.91ln{(Z/1.68×1016)1/2.06+[(Z/1.68×1016)2/2.06+1]1/2},其变形激活能为477.56kJ/mol,经验算该方程可以较好地描述该合金的变形特点。  相似文献   

18.
提出了一种先低后高的变应变速率组合等温压缩细晶方法,通过两次连续变形,得到70%以上变形量而不产生裂纹,获得了良好的细晶效果。流变应力曲线出现明显的动态软化现象,其机制为动态再结晶;在采用低应变速率进行第一次变形后,由于动态再结晶的发生,使第二次高应变速率变形时,应力降低并且可以获得较大变形量,晶粒细化充分;在两次变形之间增加保温处理,可以使细小动态再结晶晶粒得到静态球化,使细晶程度提高。  相似文献   

19.
为分析TA15钛合金成分的微小变化与显微组织和力学性能之间的响应关系,利用电子万能拉力试验机和分离式霍普金森压杆(SHPB)装置测量了4种不同成分TA15钛合金的室温准静态拉伸性能和动态力学性能,结果表明:Zr元素对室温拉伸强度性能影响微弱,随着主合金元素Al、V和Mo元素含量的增加,初生α相含量减小,次生α相片层较细,合金的强度提高,塑性下降;在临界应变率范围内,合金成分的微小变化对动态力学性能的影响微弱,提高主合金元素Al、Zr、V和Mo元素含量,有利于提高合金的临界应变率,且在此临界应变率下具有优异的动态力学性能;对于空冷条件下获得的等轴组织TA15钛合金,初生α相体积分数越小、次生α相片层较细时有利于室温抗拉强度、临界应变率和动态力学性能的提高。  相似文献   

20.
TC11钛合金片层组织热变形行为及组织演变   总被引:1,自引:0,他引:1  
通过热压缩试验研究了具有初始β转变组织的TC11钛合金在两相区800~980 ℃和应变速率0.001~0.1 s-1范围内的热变形行为和组织演变.分析了该合金在试验参数范围内变形的应力-应变曲线特征.动力学分析获得该合金在两相区变形的应力指数和变形激活能分别为4.42和490.8 kJ·mol-1,说明变形主要是位错的滑移和攀移过程.分析变形组织认为,片层组织的球化和弯折是两相区变形应力软化的原因.温度和应变速率严重影响片层组织球化过程的进行,980 ℃,0.001 s-1和0.01 s-1,以及950℃,0.001 s-1条件下变形有利于片层组织球化过程的充分进行.900~980 ℃,0.001~0.1 s-1球化过程中,变形到稳态的等轴α直径与温度补偿应变速率参数Z呈对数线性关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号