首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过Gleeble 3800热模拟试验机对TB17钛合金在变形温度860~980℃、应变速率为0.001~1 s~(-1)、最大变形量为70%下高温变形行为进行研究。通过材料参数与真应变之间的关系,利用Arrhenious本构方程关系式和Z参数建立流变应力和变形温度、应变速率和真应变三者之间的本构关系,并对组织进行分析。结果表明:TB17钛合金在应变速率为0.001~0.01 s~(-1)、变形温度为890~980℃下更容易发生连续动态再结晶,而在应变速率为0.1~1 s~(-1)下主要发生不连续动态再结晶;误差分析结果显示计算值与实测值平均相对误差为6%,说明建立的本构关系模型具有较高的准确度。  相似文献   

2.
利用Gleeble-1500D热模拟试验机对40%SiC_P/Al-Cu复合材料进行压缩实验,研究其在温度为350~500℃、应变速率为0.01~10 s~(-1)条件下的高温塑性变形行为。由实验得出变形过程中的应力-应变曲线,采用加工硬化率处理方法对应力-应变数据进行处理,结合lnθ-ε曲线的拐点和(-α(lnθ)/αε)-ε曲线最小值的判据,研究该复合材料动态再结晶临界条件。结果表明:40%SiC_P/Al-Cu复合材料的应力-应变曲线主要以动态再结晶软化机制为特征,峰值应力(σ_p)随变形温度的降低或应变速率的升高而增加;该材料的lnθ-ε曲线出现拐点,(-α(lnθ)/αε)-ε曲线出现最小值;临界应变(ε_c)随变形温度的升高与应变速率的降低而减小,且临界应变与峰值应变(εp)之间具有相关性,即ε_c=0.528εp;临界应变与Zener-Hollomon参数(Z)之间的函数关系为ε_c=4.58×10~(-3)Z~(0.09)。透射电镜观察显示应变为0.06时(变形温度为400℃,应变速率为10 s~(-1))已经发生动态再结晶,应变为0.2时,动态再结晶晶粒充分长大。  相似文献   

3.
应用加工硬化理论探讨了SAE9310钢在大应变条件下的加工硬化率曲线及动态再结晶的拐点判据,根据在变形温度为900~1200℃、应变速率为0.01~10s-1条件下的等温恒应变速率压缩实验,采用拐点判据方法和金相观察手段,研究了SAE9310钢发生动态再结晶的临界条件,建立了该钢的动态再结晶状态图。结果表明,在本实验条件下,SAE9310钢的流变曲线呈现两种特征类型;发生动态再结晶的临界应变εc和临界应力αc均随应变速率的增大和变形温度的降低而增加;临界应变与峰值应变之间满足εc/εp=0.30~0.42;随着Z参数的增加,临界变形量增大,材料发生动态再结晶变得困难。  相似文献   

4.
采用热模拟试验对一种含银Al-Cu-Mg耐热铝合金进行热压缩试验,研究了合金在热压缩变形温度和应变速率分别为340~500℃,0.001~10s-1的条件下的流变应力行为和变形组织.结果表明:合金的流变应力随应变速率的增大而增大,随变形温度的升高而减小.该合金热压缩变形的流变应力行为可用双曲正弦形式的本构方程来描述,也可用Zener-Hollomon参数来描述,其变形激活能为196.27kJ/mol.在较低的变形温度或较高的应变速率下,合金组织中主要存在沿垂直于压缩方向拉长了的晶粒.随着变形温度的升高或应变速率的降低,拉长的晶粒发生粗化,并且合金中出现了再结晶晶粒,说明合金中的主要软化机制逐步由动态回复转变为动态再结晶.该合金较适宜的热轧温度为380~460℃,应变速率为0.1~10s-1.  相似文献   

5.
TA15钛合金的动态热压缩行为及其机理研究   总被引:16,自引:1,他引:15  
为了研究TA15(Ti-6Al-2Zr-1Mo-1V)钛合金的动态热变形行为,采用圆柱试样在Gleeble-1500热模拟机上进行了恒应变速率压缩变形试验(变形温度550~1000℃,变形速率0.01~1s-1),计算了材料的变形激活能Q并观察了热变形组织。结果表明,材料的流动应力随着变形温度的升高而降低,随应变速率的提高而增大。材料的流变行为表现为加工硬化(550~600℃)、动态再结晶(650~900℃)、动态回复(950~1000℃)三种类型。材料在(α+β)相区的热变形激活能为517kJ/mol,β相区为205kJ/mol。流动应力曲线、变形激活能以及变形组织分析表明,在α+β相区动态再结晶是材料的主要软化机制,而在β相区软化机制则以动态回复为主。随着变形速率的降低,在(α+β)双相区动态再结晶进行得更加充分,而在β相区则动态回复的亚晶趋于长大。  相似文献   

6.
基于位错理论探讨了材料大应变条件下的加工硬化率曲线及动态再结晶的拐点判据,利用在变形温度1050~1100℃、应变速率0.001~1s-1条件下等温恒应变速率压缩试验获得的应力-应变数据,采用加工硬化率处理方法,研究了TA15钛合金β区变形的动态再结晶临界条件,并应用Zener-Hollomon参数建立了临界应变模型。结果表明,TA15钛合金在本试验条件下呈现两种曲线特征类型的应力-应变曲线,其θ-σ曲线均呈现拐点及-θ/σ-σ曲线上出现最小值;临界应变与峰值应变之间具有一定的相关性,即εc/εp=0.62;临界应变与Z参数之间的函数关系为εc=1.72×10-2Z0.0605。  相似文献   

7.
为了探究冷轧态5B70合金超塑性行为,利用高温拉伸试验对冷轧板材在不同参数下的变形规律进行研究。结果表明:在初始应变速率为5×10~(-4)~1×10~(-2) s~(-1)和拉伸温度为450~500℃范围内,冷轧5B70合金板材具有良好的超塑性;500℃为合金的最佳超塑性变形温度,1×10~(-3) s~(-1)为最佳初始应变速率,在最佳超塑性条件下合金的最大延伸率达到了670%,应变速率敏感性指数为0.43;在超塑性变形过程中,由于动态再结晶作用,原始纤维组织逐渐转变为等轴晶,并且晶粒明显细化;合金的超塑性变形是再结晶辅助下晶界滑移为主的变形机理,表现出了明显的晶间断裂特征。  相似文献   

8.
采用Gleeble热模拟机进行热压缩实验,研究7150铝合金在变形温度为300~450℃、应变速率为0.01~10s-1条件下的变形行为,采用Zener-Hollomon参数法构建合金高温塑性变形本构方程,并对变形后的微观组织进行分析。研究表明:7150铝合金的流变应力随应变速率增大而增大,随变形温度增大而降低。该合金热压缩变形的流变应力行为可用双曲正弦形式的本构方程描述,其参数A为4.161×1014s-1,α为0.01956 MPa-1,n为5.14336,热变形激活能Q为229.7531k J/mol。随着温度升高和应变速率降低,动态再结晶逐渐取代动态回复成为合金的主要软化机制。  相似文献   

9.
Ti-45Al-5Nb-0.3Y合金的等温热变形模拟及包套锻造   总被引:2,自引:0,他引:2  
采用Gleeble-1500热力模拟机对Ti-45Al-5Nb-0.3Y (at%)合金在不同温度和变形速率下的流变应力进行了实验研究,并对此材料进行了包套锻造,分析了变形组织及压缩性能.结果显示,TiAl合金的真应力-真应变曲线显示典型的动态再结晶软化特征,流变应力随应变速率的升高和变形温度的降低而升高,在1200℃/0.01s-1条件下变形后试样外观质量好;利用Zener-Hollomon参数计算了此合金的热变形激活能,Q=399.5kJmol-1;在α γ双相区一次包套锻造,总变形量达70%,锻坯质量良好,锻后组织由大量弯曲、破碎的层片,细小的再结晶晶粒及少量平直层片组成,动态再结晶主要发生在原层片晶团的界面处,经1150℃/80min热处理后,合金发生广泛的再结晶形成了大量细小均匀的等轴γ晶粒,平均晶粒尺寸约为10μm,但仍有少量残余层片存在;室温压缩实验表明,锻造后合金的强度和塑性提高,这与锻造后显微组织的细化有关.  相似文献   

10.
利用Gleeble-3800热力模拟试验机,在1123 ~1423K温度范围,应变速率0.5 ~ 10s-1条件下,对二次硬化超高强度23Co14Ni12Cr3MoE钢进行了高温轴向压缩试验,测得了钢的高温流变曲线,并观察了变形后的显微组织.实验结果表明,该钢流变应力和峰值应变随着变形温度的升高和应变速率的降低而减小;在真应变为0.8,应变速率为0.5~10s-1的条件下,随着变形速率的提高,其发生完全动态再结晶的温度也逐渐升高.当变形速率为10s-1时,其变形温度高于1373K,才会发生完全动态再结晶.23Co14Ni12Cr3MoE钢的热变形激活能(Q)为421.6kJ/mol.本次研究还确立了钢的热变形方程.  相似文献   

11.
在Gleeble-3500热模拟试验机上对粉末冶金TiAl合金进行热压缩试验,变形温度为1050~1200℃,,应变率0.001~0.1 s-1,工程应变量为50%,研究其在高温压缩变形中的流变应力行为。研究结果表明:在实验范围内,粉末冶金TiAl合金在热压缩变形过程中发生了明显的动态再结晶,其流变应力随应变速率的增大而增大,随变形温度的升高而降低;粉末冶金TiAl合金热压缩变形过程的流变行为可用包含Arrhenius项的Zener-Hollomon参数来描述,所获得的峰值应力表达式为:σ=90.91ln{(Z/1.68×1016)1/2.06+[(Z/1.68×1016)2/2.06+1]1/2},其变形激活能为477.56kJ/mol,经验算该方程可以较好地描述该合金的变形特点。  相似文献   

12.
TA15钛合金高温压缩变形行为与组织研究   总被引:1,自引:0,他引:1  
采用圆柱试样在Gleeble3500型热模拟机上对TA15钛合金进行等温热压缩实验研究。通过实验获得了该种材料在不同工艺参数下的真应力-应变曲线以及其变形过程中的微观组织形貌,并采用电子背散射衍射(EBSD)技术对TA15合金的热压缩变形织构进行研究。实验结果表明,TA15钛合金在高温变形时,其他工艺参数相同下,变形温度降低,应变速率升高,流动应力升高。变形过程中,在相变点以下,软化机制以动态再结晶为主,相变点以上软化机制主要以动态回复为主。不同变形条件下分别存在再结晶织构和形变织构。  相似文献   

13.
基于热模拟机GLEEBLE1500,以AZ31为研究对象进行热压缩实验,获得材料的应力-应变曲线。用金相显微镜对不同温度及应变速率下的金相进行观察分析,并对比分析热压缩前后的微观组织。同时分析了不同温度及应变速率下材料的力学行为,其行为属于典型的动态再结晶型。当热压缩温度为350℃和400℃时,材料强度随应变速率增大而增大,且加工硬化也增大。当应变速率为0.01和0.1/s时,随着变形温度的升高,材料的应力逐渐降低。在不同温度下,应变速率为0.01/s时的应力比应变速率为0.1/s时的应力要低。  相似文献   

14.
采用Gleeble-1500热模拟机对新型第三代镍基粉末高温合金FGH98Ⅰ在不同变形温度(950~1150℃)及不同变形速率(0.0003~1s-1)下高温变形行为进行了研究,绘制了动态RTT曲线,并建立了合金的热变形本构关系。结果表明:合金的流变应力随变形温度的升高和应变速率的降低而降低,当变形温度≤1100℃、应变速率≥0.0003s-1时,其流变应力随应变量增加呈动态再结晶特征;在应变速率≤0.01s-1的高温变形条件下,其动态再结晶的开始时间与变形温度无线性关系;实验验证了采用考虑应变量的双曲正弦模型能较好地反映合金在热变形过程中流变应力的变化规律。  相似文献   

15.
TC4-DT钛合金高温热变形行为研究   总被引:1,自引:0,他引:1  
利用Gleeble-3500型热模拟实验机,研究了TC4-DT损伤容限型钛合金在温度850℃~1000℃、应变速率0.01~10s-1、变形程度为40%~70%条件下的热变形行为,分析了该合金的流变应力行为及微观组织演变规律,并建立了本构关系模型。研究结果表明,TC4-DT合金在950℃以下的较低温度变形时应力软化现象非常明显,变形机制和热变形激活能不同于950℃以上的较高温度变形机制;在950℃以上高温度变形时,低应变速率(如ε=0.01s-1)促进了动态再结晶行为的发生,而在较高的应变速率(如ε=10s-1)时,一般只发生动态回复现象,动态再结晶行为受抑制。  相似文献   

16.
 测试了Ti-10V-2Fe-3Al合金在β区850℃~950℃、ε=5×10~(-3)~10s~(-1)条件下的压缩真应力-真应变曲线。研究了变形组织。结果表明:在850℃~950℃、ε=10~(-1)~10s~(-1)范围内变形,动态回复是主要软化机制,其σ-ε曲线为动态回复型,变形后的组织为拉长晶粒。对所得的σ-ε曲线进行了数学分析,得出了流变应力模型。  相似文献   

17.
通过对第三代镍基粉末高温合金FGH98进行热模拟压缩实验,得到了不同温度(1050~1110℃)和不同应变速率下(0.01~1s-1)的真应力-真应变曲线.根据其特点分析了该合金的流变应力与温度和应变速率以及应变量的关系.由实验结果得出:该曲线呈典型的热激活特征,合金流变应力对变形温度和应变速率敏感.在此基础上选用Ar...  相似文献   

18.
TC11钛合金片层组织热变形行为及组织演变   总被引:1,自引:0,他引:1  
通过热压缩试验研究了具有初始β转变组织的TC11钛合金在两相区800~980 ℃和应变速率0.001~0.1 s-1范围内的热变形行为和组织演变.分析了该合金在试验参数范围内变形的应力-应变曲线特征.动力学分析获得该合金在两相区变形的应力指数和变形激活能分别为4.42和490.8 kJ·mol-1,说明变形主要是位错的滑移和攀移过程.分析变形组织认为,片层组织的球化和弯折是两相区变形应力软化的原因.温度和应变速率严重影响片层组织球化过程的进行,980 ℃,0.001 s-1和0.01 s-1,以及950℃,0.001 s-1条件下变形有利于片层组织球化过程的充分进行.900~980 ℃,0.001~0.1 s-1球化过程中,变形到稳态的等轴α直径与温度补偿应变速率参数Z呈对数线性关系.  相似文献   

19.
通过等温恒应变速率热模拟压缩试验,研究了一种铸态组织的阻燃钛合金在变形温度900~1200℃,应变速率0.001~1s-1下的高温流变应力和组织演变,计算了变形激活能及应力指数,并给出了该合金变形的本构方程.结果表明,此种阻燃钛合金高温变形是扩散控制的过程,软化机制以动态回复为主,但在应变速率较高时会发生项链状动态再结晶,而在应变速率较低时会发生连续再结晶,合金中的碳化物形貌在高温变形过程中也会发生转变.  相似文献   

20.
在Gleeble~1500热模拟实验机上,采用高温等温压缩,应变速率为0.001~10/s,变形温度为360~520%,对通用型铝锂合金在高温压缩变形中的流变应力行为进行了研究,分析了其高温变形的物理本质。结果表明:在等应变速率下,真应力随温度的升高而降低;在相同的变形温度下,随应变速率的增加,流变应力水平升高。在较低的变形速率及较高的变形温度条件下热变形时,通用型铝锂合金容易发生动态再结晶。而变形速率较高,变形温度较低时,通用型铝锂合金可能发生剪切变形,热变形过程中则主要发生动态回复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号