首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
空心涡轮叶片一直是制约我国高性能航空发动机研制的瓶颈。针对空心涡轮叶片精铸合格率较低的问题,在讨论涡轮叶片精密铸造工艺的基础上,从精铸"控形"及"控性"两方面,对涡轮叶片精铸成形技术的研究成果进行了总结。此外,围绕未来更高性能航空发动机涡轮叶片,从材料、结构、工艺的角度对其发展趋势进行了讨论。分析认为,陶瓷基复合材料有望在发动机涡轮叶片上得到更广泛的应用。  相似文献   

2.
本文评述了近年来国内外宇航熔模铸造技术的发展概况,内容包括:熔模铸件市场情况,铸造涡轮叶片发展过程、定向凝固及单晶技术、整铸涡轮转子、大型结构铸件、钛合金精铸件、陶瓷壳型及型芯工艺以及熔模铸造新技术。  相似文献   

3.
针对航空发动机单晶涡轮叶片的制造技术以及再结晶缺陷进行分析,结合国内外研究现状,从单晶空心涡轮叶片铸造技术、单晶空心涡轮叶片再结晶缺陷及单晶叶片再结晶控制方法等方面,对单晶叶片制造技术及再结晶控制方法取得的研究成果进行总结和分析。重点介绍了叶片制造技术和再结晶控制技术的方法及研究。对我国单晶空心涡轮叶片制造技术及再结晶缺陷的进一步研究重点进行分析。  相似文献   

4.
随着航空工业的发展,对发动机特别是涡轮叶片的性能要求也越来越苛刻。目前涡轮叶片的组织主要为柱状晶或单晶,采 用定向凝固技术制造。由于合金元素种类繁多、叶片形状和内腔复杂,在制造过程中叶片容易产生各种铸造缺陷,如杂晶、大/小角晶 界、雀斑等,导致叶片合格率低、研发周期长、制造成本高。数值模拟技术作为一种低能耗、高效率、短周期的研究方法,能有效预测缺 陷产生,优化涡轮叶片定向凝固工艺,提高成品率。介绍了高温合金涡轮叶片定向凝固模拟的物理数学模型,总结了国内外航发叶片 成形过程中数值模拟技术的研究进展,并对其发展方向进行了展望。  相似文献   

5.
K417G涡轮整体叶盘叶片裂纹原因分析与验证   总被引:2,自引:0,他引:2  
针对K417G合金铸造涡轮整体叶盘在发动机试车考核中出现的叶片裂纹问题,基于裂纹叶片断口宏观、微观分析及低倍组织检查结果,开展了粗晶铸造和表面细晶铸造试样的力学性能对比测试及叶片共振转速分析。结果表明,整体叶盘叶片裂纹产生的主要原因是高压涡轮导叶数24激起的3阶共振,同时粗晶铸造和叶片根部厚度偏薄也降低了叶片的疲劳抗力。为此,采取改变高压涡轮导叶数、增加叶片根部厚度和改用表面细晶铸造工艺等措施,有效避开了叶片危险共振并提高了叶片的疲劳抗力。经后续试验验证考核,叶片采取上述措施后不再出现裂纹问题。  相似文献   

6.
先进高温合金近净形熔模精密铸造技术进展   总被引:2,自引:1,他引:2  
介绍近期国内外的高温合金近净形熔模精密铸造技术研究发展状况,重点介绍北京航空材料研究院在航空发动机高温合金涡轮叶片、整体叶盘以及导向器和机匣类结构件的精密铸造技术领域取得的研究成果.论述高温合金精密铸造技术的未来研究重点.  相似文献   

7.
中国航空发动机涡轮叶片用材料力学性能状况分析   总被引:4,自引:0,他引:4  
何玉怀  苏彬 《航空发动机》2005,31(2):51-54,58
简述了国内外航空发动机涡轮叶片用材料的发展,对中国航空发动机涡轮叶片用材料中的变形高温合金和铸造高温合金的拉伸、持久、疲劳性能进行了比较,分析了目前中国航空发动机涡轮叶片用材料性能数据十分缺乏的现状。  相似文献   

8.
镍基单晶涡轮叶片作为20世纪80年代以来航空发动机重大技术之一,近几年的发展相当迅速,相继开发了几代单晶合金,目前被广泛应用于先进的在役和在研的航空发动机,为大幅度提高发动机性能作出了重大贡献。  相似文献   

9.
与燃烧室一样,涡轮设计对于长寿命和低维修成本来说是极其重要的。随着涡轮进口温度的升高,涡轮部件需要改善冷却、材料和融热涂层。众所周知,罗尔斯·罗伊斯公司是气冷涡轮叶片的先驱者。早在1952年就最早试验过气冷涡轮叶片,1956年该公司的第一种锻造的气冷涡轮叶片投入生产。BRZll发动机系列从1992年的一22型采用简单冷却孔锻造叶片发展到1987年一524型采用多路回转冷却通道铸造定向凝固叶片,涡轮进口温度从1530K提高到1730K。“道达”892的涡轮设计是建立在RBZll的使用经验和当代三维气动、冷却和材料技术的基础上的,所有的转…  相似文献   

10.
基于叶尖定时的航空发动机涡轮叶片振动测量   总被引:2,自引:2,他引:0  
介绍了基于叶尖定时的非接触振动测试系统应用于涡轮转子叶片的技术瓶颈,突破高温传感器结构设计、安装以及冷却等技术难点,通过设置系统触发信号保持时间,解决H型涡轮转子叶片对叶尖定时信号的二次触发问题,并给出核心机状态下转速基准实现方法。将非接触振动测量技术成功应用在某型涡扇发动机高压涡轮转子叶片振动监测中,有效获取涡轮转子叶片共振时的振动频率和幅值,并与应变计测量叶根动应变结果进行比对。结果显示:基于叶尖定时的非接触振动测试系统和接触式动应力测试系统均可监测涡轮转子叶片振动,成功辨识转子叶片8 200 r/min时的12阶激励阶次激发的一弯振动模态,两种分析方法识别共振频率相对误差在4%以内。  相似文献   

11.
研究了铸造温度参数(型壳温度T型壳、浇注过热度△T)在铸型搅动整体涡轮细晶铸造工艺中对涡轮各部位晶粒特性的影响。结果表明:型壳温度、浇注过热度对整体细晶铸造涡轮轮毂中心部位晶粒特性没有明显影响,该部位的晶粒度主要由铸型搅动机械参数决定;型壳温度、浇注过热度的复合作用对整体细晶铸造涡轮叶片部位晶粒的尺寸与形态有关键影响。  相似文献   

12.
在涡扇、涡轴两种中、小型燃气涡轮发动机的研制中,采用了较多的钛合金、高温合金和高强结构材料和粉末盘热等静压、单晶叶片精铸、等温锻造、无余量整体精铸、大型薄壁带铸造油路的名合金铸造、多弧等离子镀、蜂窝激光焊、高温真空钎焊和钛合金的锻造、铸造、表面处理、焊接等新工艺,保证了新机性能,使中小涡轮燃气发动机制造技术上了一个新台阶。  相似文献   

13.
采用SEM和EDS分析高压涡轮叶片冷却孔间裂纹的失效机理,发现引起裂纹的主要原因是作用在叶片上的热机械疲劳应力和局部应力集中所致,针对K417铸造高温等轴晶材料熔焊产生晶界裂纹和晶界液化裂纹机理,开发了微弧等离子低应力焊接技术,控制了焊接缺陷的产生,实现了冷却孔裂纹的高压涡轮叶片的再制造.  相似文献   

14.
采用高温合金控晶铸造工艺,将动力涡轮的轮盘铸造成细晶,叶片根部铸造成平行于应力方向的柱状晶,并对铸件进行热等静压和真空热处理,脚了普通铸造动力涡轮叶片过早断裂的技术难题。  相似文献   

15.
1引言由于铸造技术的改善,国外现已经可以在涡轮工作叶片上铸造多个细小的冷气通道。这些通道通过冲击孔与冷气供气腔连接以实现冲击冷却,冲击后的气体可以通过连接孔进入下一个腔室或者直接通过气膜孔流出叶片形成气膜冷却。这种冷却结构的优点是:利用冲击冷却获得高换热系数,  相似文献   

16.
涡轮燃烧技术在涡扇航空发动机上的应用分析   总被引:4,自引:0,他引:4  
分析了采用涡轮燃烧技术后的涡扇航空发动机的性能。分析结果表明:采用了涡轮燃烧技术以后,航空发动机的效率、推重比都得到了较大的提高。同时分析了采用涡轮燃烧的两种技术方案:一种是在静叶片间安装喷嘴,属于多级燃烧技术;一种是将整个涡轮作为一个大燃烧室,类似于高温空气燃烧技术。  相似文献   

17.
涡轮叶片冷却技术的应用和发展   总被引:1,自引:0,他引:1  
针对航空发动机涡轮叶片的工作环境和使用要求,论述了涡轮叶片冷却技术的应用情况,展望了涡轮叶片冷却技术的发展趋势.阐述了研究涡轮叶片冷却技术必须同时重视改革工艺方法,合理的也是可行的做法应是开发高性能耐高温材料和发展新型高效涡轮叶片冷却技术并重,甚至将其合二为一,发展复合结构设计这一新型设计思想;以及对涡轮叶片根据实用要求用多种材料进行复合结构设计,用力学理论分析和强度实验的方法进行材料组合优化、复合结构优化,充分发挥各种材料特长,形成一种任何单一材料所不具备的优异性能涡轮叶片的观点.  相似文献   

18.
国外为了提高航空发动机精铸叶片的冶金质量,在真空炉熔铸涡轮叶片及涡轮导向叶片时,都严格地控制熔炉坩埚的使用寿命。例如英国罗·罗航空公司精铸工厂采用了等静压成型坩埚,并规定了成型坩埚的使用寿命:“熔铸涡轮叶片坩埚使用寿命不准超过10次,熔铸涡轮导向叶片不准超过20次,否则叶片的冶金  相似文献   

19.
荣科 《航空学报》1985,6(3):201-207
 本文回顾了自1956年以来,近三十年我国航空发动机铸造涡轮叶片的发展历史和现状,归纳了在此期间材料和铸造科研人员提供的铸造高温合金和铸造方法,满足了航空发动机的需要。 在铸造动叶片、空心叶片的陶瓷型芯、弥散强化合金的研究与运用计算机进行质量控制等方面都取得显著的成就。 着眼为将来发展高性能发动机,文中提出研究陶瓷和难熔金属材料以适应下列要求: 1.更高的工作温度 2.更高的表面稳定性 3.更高的力学性能 除了应不怕失败地发展上述材料外,还应考虑高温合金仍是550~1100℃下工作的发动机结构件材料,而且还要使用一段很长的时间。因此,要研究推广计算机的应用。难熔金属模具及真空压铸叶片工艺的改进,将提高叶片质量和代替传统的熔模铸造工艺。  相似文献   

20.
涡轮叶片是航空发动机中最关键的部件之一,要求可靠地进行运转,因此对叶片的制造要求采用先进的铸造工艺,制定严格的验收标准,采用可靠的检验方法。这里介绍英国的一些情况。在英国,从事航空涡轮叶片铸造的公司都要得到英国民航当局或国防部的同意和许可。表1是目前英国航空涡轮叶片用合金的化学成分,成分要求严格控制,特别是有害元素例如铋要求控制在0.5ppm,银及铅要求控制小于5ppm。叶片广泛采用陶瓷型芯,叶片的层厚可以小到1毫米,芯子直径小到0.5毫米。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号