首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 172 毫秒
1.
从位势理论出发 ,引进小扰动细长体理论中的部分思想 ,建立了任意截面弹体法向气动力的理论基础 ,推导出工程估算方法。该方法通过求解仅与截面形状有关系数 ,对已有的圆截面弹体气动力进行修正 ,很方便得到任意非圆截面弹体气动力特性。该方法预测结果与实验数据进行比较 ,具有较好精度  相似文献   

2.
从飞机翼面外形设计的角度,利用顺气流截面弦长与任意斜截面弦长的相互关系,导出了一种求解翼面类斜截面外形的简便方法。本方法的优点是,可以方便地给出翼面类任意斜截面外形的相对坐标值。只要算出任意斜截面的弦长,就可以很快地得到对应外形的坐标值,而无需求解复杂的曲面方程。与传统的方法相比较,减少了计算量。这对于求解着于非顺气流方向的翼肋外形来说,尤其显得方便。文中以某型飞机机翼为例,分别用传统方法和简便方法进行计算,得到完全一致的结果。  相似文献   

3.
本文采用吸力比拟原理,结合基本解的数值计算方法,用来计算航天飞机机翼从小迎角到大迎角(a=0°~30°)的亚音速纵向气动特性;而对零升阻力和机身气动特性,则用工程估算方法计算。由于目前的航天飞机,一般为下单翼的复杂外形翼-身组合体,根据文[9]的原理,可忽略翼-身干扰对纵向气动特性的影响。 本文导得可以计及涡效应的任意平面形状边条机翼的亚音速气动特性的计算公式,亦可计算尖梢机翼的展向升力分布。公式中所需的位流系数可采用涡格面元法进行数值计算来获得,压缩性效应则通过位流系数来计及。 本文计算了多种机翼和航天飞机的气动特性。与实验数据比较表明,本方法具有方法简便、计算快速和计算结果具有设计精度的优点,是计算航天飞机亚音速气动特性的一种有效方法。可供航天飞机初步设计使用,亦可作为航天飞机气动优化设计系统中的子系统。经过适当推导,本方法可推广应用于亚音速前缘的超音速情况。  相似文献   

4.
三种不同的进气道与弹体组合体雷达散射截面特性   总被引:3,自引:0,他引:3  
对三种不同进气道与弹体组合所得的三个模型进行了雷达散射截面(RCS)实验研究,三种组合分别为:埋入式进气道与多边形截面弹体的组合,埋入式进气道与常规圆截面弹体的组合、S弯进气道与常 圆截面弹体的组合,雷达散射截面特性实验和对比研究表明:圆截面弹身时,采用埋入式进气道比采用S弯进气道具有更好的隐身效果;采用埋入式进气道时,多边形截面导弹比圆截面弹身隐身性能更好。可以推断,多边形截面弹体与埋与式进气道的组合具有光明的应用前景。  相似文献   

5.
独柱式桥塔易发生风致振动,当塔柱倾斜且采用变截面形式时,风的作用下常表现出复杂的三维流动效应.为考察独柱式变截面斜塔静动力气动性能,通过桥塔刚性模型测力风洞试验测试了不同风向角下桥塔气动力系数,对比分析了桥塔三维绕流的影响.通过桥塔气弹模型测振风洞试验,测试了涡激振动起振风速及振幅,对比了来流风向及阻尼比对桥塔涡激振动的影响.研究结果表明,桥塔整体气动力系数及断面等效气动力系数沿塔高的变化规律受来流风向角的影响显著,顺桥向风作用下倾斜桥塔易发生横桥向涡激振动,提高结构阻尼比,可有效抑制涡振.  相似文献   

6.
本文提出了一种适于初步设计使用、具有良好精度的亚、超音速细长翼身组合体大迎角气动特性的综合性计算方法。对大迎角情况下的涡升力,采用吸力比拟原理计算;位流升力的计算,采用基本解的数值计算方法。关于机翼翼剖面头部圆度和涡破碎对涡升力的影响,进行经验性修正。翼身干扰的贡献,通过翼身干扰系数进行计算。并按文[4]原理,将亚音速计算方法推广到亚音速前缘的超音速情况。对几种机翼与翼身组合体的计算结果表明,本文方法具有方法简便、计算快速和符合设计精度要求的优点。  相似文献   

7.
本文用跨音速面积律对某翼身融合体进行修形设计,并通过三维欧拉方程对修形前、后的融合体气动力进行了数值模拟。模拟结果的对比表明:在计算的马赫数范围内0.8≤M≤2.0,采用跨音速面积律进行优化设计能达到增升减阻的效果。  相似文献   

8.
变截面梁的控制方程为变线数微分方程,一般只能用各种近似方法求解,而且比较复杂。对于梁式构件,本文不求解变系数方程,而是用力法,在力法方程中,主、副系数和自由项的莫尔积分使用积分表,可以方便而且精确地求出变截面梁的弯矩和位移。  相似文献   

9.
风扇翼翼型气动特性研究   总被引:3,自引:1,他引:2  
应用RNGκ-ε二阶精度增强壁面函数法,数值模拟了典型风扇翼翼型在不同迎角、不同叶片转速、不同前方来流速度情况下翼型的流场特征和气动力系数变化。通过对流场和气动力系数的计算分析发现:在来流速度较大情况下,风扇翼翼型上部后行叶片会引起翼型上的气流分离,随着速度的增加,气流分离加剧,翼型气流分离引起翼型升力系数随着来流速度增加而不断下降。通过研究翼型弦线上分布点的力矩系数随翼型迎角、来流速度和风扇转速的变化规律,确定弦线上力矩系数不随各状态量变化的点约在翼型弦线上距前缘的40%弦长位置。  相似文献   

10.
适合于柔性结构扑翼飞行器的空间非定常涡格法   总被引:2,自引:0,他引:2  
推导了新的基于空间非定常涡格法的扑翼飞行器升力和推力的计算公式,然后分析了瞬时形状速度对它们的影响.与实验结果的对照表明,基于向量分析、考虑了飞行中的诱导阻力因素的新公式可以有效地估算升力和推力.由于结构的柔性使扑翼在扑动过程中存在变形,本文考虑了空间涡格法中扑翼的η/t对气动力的影响,提出了η/t的表达式,使之更接近真实扑动情况,并计算了其对扑翼飞行器升力和推力的影响.通过计算发现,升力系数和推力系数的正峰值和负峰值随η/t增大而增大,平均升力和平均推力也随η/t增大而增大,表明可以通过改变结构参数达到改善气动性能的目的,对扑翼飞行器的研制有一定的指导作用.  相似文献   

11.
飞行器隐身与气动外形综合优化设计初探   总被引:2,自引:0,他引:2  
雷达散射截面已成为飞行器设计的一个重要战技指标。由于RCS和气动特性都与飞行器的外形密切相关,故外形设计时要兼顾隐身与气动力等多方面的因素。本文以对飞行性能影响较大的纵向气动力系数作为约束条件,某方位的RCS均值最小作为目标函数,对飞行器隐身与气动外形的综合优化设计方法作了初步探讨,并给出了应用示例,得到了比较合理的结果。  相似文献   

12.
提出了在超宽带射频仿真系统中三轴转台的低RCS设计方法.该方法采用转台机械结构设计、低RCS外形优化分析与测试测量相结合的方式.首先基于低RCS要求及三轴转台的结构特性,对其进行外形优化.通过计算三轴转台的表面感应电流分布,分析三轴转台的强散射区域,并选取相应吸波材料及涂敷方法对三轴转台进行处理.实际测量表明,涂敷吸波材料后三轴转台散射回波幅度显著减小,分布均匀,达到了预设的效果.  相似文献   

13.
某飞翼外形雷达散射截面特性的分析   总被引:1,自引:0,他引:1  
用物理光学理论和物理绕射理论计算了某飞翼外形雷达散射截面(RCS)特性,并在微波暗室里对该飞翼模型的RCS进行了测量,计算结果和测量结果基本吻合,在此基础上,分析了飞翼外形RCS随方位角分布的特点以及其外形隐身设计的特点。  相似文献   

14.
振型斜率一直是姿态控制系统关心的首要问题。通过等效梁模型结合局部三维有限元精细模型的混合建模的方法,研究了结构局部刚度变化对惯性部件安装位置振型斜率的影响。基于模态分析,在多种工况下提取了振型与惯性部件的振型斜率并进行对比研究,讨论了舱体开口加强圈梁刚度变化、载体十字梁截面变化、连接固定支座刚度变化以及壳体壁厚变化对振型斜率的影响,为航天运载器结构动力学模型简化与姿态控制系统相关结构设计提供了参考依据。  相似文献   

15.
三维复杂目标求解的多层快速多极子方法   总被引:2,自引:0,他引:2  
采用多层快速多极子方法(Multilevel fast multipole algorithm,MLFMA)求解混合场积分方程(Combined field integral equation,CFIE),并选择RWG型基函数,对金属带缝锥球体、三面角反射器以及钻石体的单站RCS(Radar cross section)进行了计算,计算结果与试验吻合良好.在此基础上计算了F-22缩比模型的单站RCS,其计算量、存储量分别达到O(NlogN)量级和O(N)量级,此方法适用于带有尖点和特别细长曲面的三维复杂目标,如战斗机外形的RCS计算分析.  相似文献   

16.
雷达隐身和机载电子攻击组合增强的飞机作战生存力评估   总被引:1,自引:0,他引:1  
作战生存力是新型军用飞机发展中要考虑的一个关键要素,雷达隐身和机载电子攻击是两个减缩飞机敏感性的主要技术.本文给出一个攻击任务的战术设定,研究了雷达散射截面和机载雷达干扰机对威胁雷达探测概率的影响,确定了雷达制导地空导弹和防空炮火在目标雷达散射截面减缩或/和干扰机辐射功率干扰下的制导精度,计算了飞机单发击毁概率,最后给出一架攻击机在一个假设敌对威胁环境中的出击架次生存力,说明综合使用雷达隐身和机载电子攻击技术使作战飞机的生存力得到增强,评估方法有效实用.  相似文献   

17.
研究了TWR-1拖靶目标的雷达散射特性,提出了相应的参数设计,研究了拖靶目标的雷达散射截面积以及空间的散射特性。并且通过对TWR-1拖靶的全尺寸静态RCS实验测量,来验证设计方案的正确性。测量结果表明,TMR-1拖靶目标散射特性好,且稳定,满足目前我国靶场靶试对靶标的目标特性要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号