首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
本文提出了一种适于初步设计使用、具有良好精度的亚、超音速细长翼身组合体大迎角气动特性的综合性计算方法。对大迎角情况下的涡升力,采用吸力比拟原理计算;位流升力的计算,采用基本解的数值计算方法。关于机翼翼剖面头部圆度和涡破碎对涡升力的影响,进行经验性修正。翼身干扰的贡献,通过翼身干扰系数进行计算。并按文[4]原理,将亚音速计算方法推广到亚音速前缘的超音速情况。对几种机翼与翼身组合体的计算结果表明,本文方法具有方法简便、计算快速和符合设计精度要求的优点。  相似文献   

2.
本文对λ=5,η=1、(?)=10%,前、后掠角分別为45°的机翼,在迎角α=0°~70°范围内进行了低速纵向特性的实验研究。为了深入了解气动特性,除了测量力和力矩外,还做了油流和烟流实验。实验发现,后掠翼在α=25°~30°、前掠翼在α=50°~55°范围内,气动特性出现异常变化(阻力不随迎角改变,升力急剧下降,力矩曲线斜率反向),并发现在较大迎角时机翼后缘出现后缘涡。文中除了比较和分析前、后掠机翼气动特性外,对气动特性的异常变化和后缘涡都作了说明或讨论。  相似文献   

3.
在非线性迎角范围内,雷诺数通过对机翼脱体涡和前机身体涡影响来改变飞机的纵向气动特性。由于现有风洞条件所限,在这一范围内,使用变雷诺数试验方法把试验数据外插到飞行值非常困难。为解决这一问题,本文给出了一种基于全尺寸飞行前缘雷诺数计算出外露翼可得到的前缘推力系数,并通过风洞试验求出试验条件下机翼上可得到的前缘推力系数,从而获得雷诺数对气动特性影响量的工程计算方法。该方法适用于翼面产生脱体涡流型或脱体涡占优(涡破裂前)所引起的非线性问题。  相似文献   

4.
本文用涡格镜像法计算小迎角时翼身组合体的地面效应。在机身上分布离散的马蹄涡系(涡格)。在机身内部分布机翼的马蹄涡系对机身(圆)的镜像涡系。在机身表面分布空间源(汇)。若机身迎角不为零时,还要沿机身轴线分布二维偶极子。用这种翼身组合体的对地镜像来模拟地面的作用。本文主要研究小迎角的情况。故翼身组合体及其镜像均与地面平行。在TQ—16电子计算机上,用ALGOL—60语言编成程序,计算了翼身组合体在接近于地面时纵向空气动力特性,其结果为:升力曲线斜率随高弦比的减少而增加、低头力矩随之增加,压力中心也随着变化。  相似文献   

5.
、1才 1几︸!了、者专题综述有限元素法在解空气动力学非线性方程中的应用 及其前景关于紊流附面层差分解若干问题横侧向动态飞行品质概述现代直升机的先进技术直升机全机振动分析与控制杨昨生 曹起鹅(1) 谭振华(1)王适存、张晓谷、郭士龙(3) 张令弥(3) 理论与试脸研究侧滑绕流的小扰动渐近展开的内外解衔接法亚音速侧滑薄翼气动特性的数值计算方法跨音速流动中翼型抖振边界的确定用网格法计算任意平面形状超、亚音速机翼阻力有限基本解法中所用到的不可压涡计算亚音速定常流中偏转付翼时机翼—机身 组合体气动特性的涡格镜象法亚音速风洞三…  相似文献   

6.
研究的主要目的是确定微型飞行器小展弦比机翼的低雷诺数升阻特性。通过风洞试验测量了几种不同外形机翼的升力系数和阻力系数。研究主要涉及了矩形、椭圆、齐莫曼和反齐莫曼四种平面形状的机翼,并对每种外形机翼分别进行了展弦比为1.0、1.5、2.0的比较试验,文中以矩形翼为例分析了展弦比对机翼升阻特性的影响。为了研究前缘后掠角对机翼升阻特性的影响,进行了后掠角分别为20°、30°和45°梯形机翼的气动试验。试验结果表明:在大部分迎角范围内,同其它外形机翼相比矩形翼具有更高的升力系数,反齐莫曼翼的升阻比最理想;在小展弦比范围内对于平板翼型的机翼,较大的展弦比不会给升力系数提高带来更明显的效果;后掠角20°和30°梯形翼的升阻特性相差不大,后掠角45°梯形翼具有较大的升力系数和阻力系数。  相似文献   

7.
本文利用变换坐标的方法,把处理来流平行于机翼对称面的涡格法推广到有侧滑的情况去.文中计算了亚音速流中侧滑薄翼的气动特性。机翼可以是任意平面形状和具有上反角。文中给出了一些算例,并把其结果与其他方法和实验数据比较,结果是令人满意的。  相似文献   

8.
采用七孔探针在低速风洞中对双三角翼截面和尾流进行流场测量,并进行翼表面测压试验,研究了75°/45°双三角翼在中等迎角到大迎角下的旋涡特性。试验表明,用七孔探针测量空间流场,结果准确可靠。75°/45°双三角翼的流态特点是,由于内翼涡对外翼涡的诱导作用,使外翼涡趋于稳定,在一定迎角下,两涡发生绕合与合并,随迎角增加,合并涡破裂点前移。  相似文献   

9.
本文以文[1]为基础,研究了平板锐缘边条机翼亚音速气动特性的解析估算,导出了曲线前缘边条机翼气动特性的通用计算式,并可计算尖梢机翼的展向升力分布;所需的位流常数采用涡格面元法来确定。本文就多种机翼进行了计算,与实验结果的比较表明,本方法具有计算简单快速、计算结果具有实用精度的优点,可供初步设计与性能分析时使用。  相似文献   

10.
采用数值方法研究了亚声速地面效应条件下不同翼型的气动特性,进一步以Ma=0.5来流工况为例,研究了翼型参数和飞行高度对气动特性的影响。计算结果表明在Ma为0.5、迎角为6°的地效情况下,翼型弯度减小,更容易在翼型前缘产生激波阻力;翼型下翼面后缘弯度增大使得后缘压力更高,升力系数和低头力矩相应增大;随着飞行高度的减小,地效作用加强,翼型下翼面压力增大,下翼面的升力增量大于上翼面吸力损失,机翼升力系数和升阻比增加越来越显著。  相似文献   

11.
为了加大某型机航程、升限、延长留空时间,在原型机上采用双三角翼改进气动特性,以期提高该机性能,满足使用需求.在中国空气动力研究与发展中心高速所FL-24风洞,对某型机模型进行了压力测量实验研究,主要测量了机翼在不同M数,不同迎角下的压力分布,着重分析了模型在不同试验状态下机翼内、外翼流动及压力分布特性.实验结果表明:在亚、跨声速流动中,内翼压力系数Cp随迎角α呈非线性变化,外翼压力系数Cp随迎角α呈线性变化,在超声速流中,内、外翼压力系数Cp随迎角α呈线性变化,具有线性和非线性气动特性相结合的特点.在大迎角α时,内翼压力系数Cp值大于外翼相同迎角α下的压力系数Cp值,内翼占主导地位,小迎角α时,外翼压力系数Cp值大于内翼相同迎角α下的压力系数Cp值,外翼占主导地位,尤其在跨声速流中更为突出,兼顾了大小迎角之间的矛盾.超声速时,内、外翼压力系数Cp随迎角α变化规律优于亚、跨声速,兼顾了亚、跨、超声速气动特性.综合利用内、外翼特点,是改进某型机气动特性的一种行之有效的措施.  相似文献   

12.
在激波管风洞中,模型自由飞方法测量了两种不同迎风面三角翼体模型的大攻角气动力。应用局部方法以一种迎风面外形的实验结果为依据,估算了另一迎风面外形的气动特性,结果与实验值吻合较好。另外,本文还进一步估算了航天飞机外形的气动特性,与美国的 CALSPAN 公司48英寸(1.2米)激波风洞中的实验值相比,结果也令人满意。从而表明,局部方法和实验相结合。用于简捷快速估算任意外形的高超声速气动特性是一有效的工程预示方法。  相似文献   

13.
本文通过对三个具有低雷达散射截面(RCS)隐身特性的“板块”多边形截面机身模型及通常的圆截面机身模型进行的低速气动特性的研究,包括迎角直到50°的低速风洞测力试验、水洞流谱试验及初步的工程估算结果与实验结果的比较,发现多边形截面机身不但具有良好的隐身特性,而且其气动特性也并不比圆截面机身差,其升力特性及最大升阻比大大优于圆截面机身;同时,在大迎角零侧滑条件下,能产生稳定的侧力,其值大于圆截面机身的侧力,发生迎角小于圆截面机身的发生迎角。多边形截面机身的气动力计算方法目前尚不成熟。本文建议在小展弦比机翼的计算方法基础上,按相应截面的外形特征给出修正方法,其计算结果接近实验结果。  相似文献   

14.
本文介绍一种计算带分离的大中层弦比、小后掠角机翼低速气动特性的近似方法。根据给定机翼的平面形状和几何迎角,按线化升力面理论算出升力和力矩沿展向分布的第一次近似值。再逆向应用升力面理论估算下洗流场,从而近似地得到各个削面的有效迎角。然后根据有效迎角及雷诺数,从翼型实验数据得到相应的升力和力矩分布的第二次近似值。如此反复迭代直至收敛为止。  相似文献   

15.
提出了一种新的折叠弹翼悬挂物机弹分离轨迹试验技术,重点解决了在机弹分离过程中折叠弹翼动态展开时悬挂物的气动力获取问题。研究表明,提出的试验技术通过将悬挂物气动力修正方法引入到悬挂物分离安全性研究当中,准确地得到悬挂物的分离特性,解决了折叠弹翼悬挂物分离轨迹风洞试验技术瓶颈,为折叠弹翼悬挂物的投放分离安全性提供一套工程实用的解决方案。  相似文献   

16.
本文给出了航天飞机轨道器在无粘、无侧滑和不偏舵情况下再入飞行高超音速大攻角气动力计算方法。对复杂的航天飞机外形,本文提出用三角形有限表面面元法来逼近,克服了已有方法中采用平面梯形面元逼近后近似外形有裂缝,有台阶等不连续的缺陷,其结果与实验结果吻合较好,从而证明用三角形表面面元法更为合理。  相似文献   

17.
设计了一种新型的自由机翼。与常规固定机翼和旋翼不同,自由机翼通过一根展向旋转轴固定在机身上,可在俯仰轴线上自由旋转。在飞行时,相对气流的平衡迎角保持稳定不变。即使受到如突风等外界扰动影响,自由翼也能在扰动消除后很快自动恢复到平衡迎角,避免了常规固定机翼的失速问题。通过风洞试验,对带升降副翼控制的自由翼气动特性也进行了实验研究,验证了位于自由翼后缘的升降副翼可有效地控制自由翼相对气流的平衡迎角。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号