首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
发展高精度的高阶谱方法,通过抛物化稳定性方程及其局部法,研究在压力梯度作用下的非平行流边界层稳定性问题。与经典的平行流边界层稳定性结果相比,显示了在某些条件下非平行性对稳定性的关键作用。提出了压力梯度对临界雷诺数的影响研究,探讨了不同压力场对流动稳定性作用的规律性。  相似文献   

2.
机翼非平行边界层稳定性研究   总被引:1,自引:0,他引:1  
从Navier-Stocks(N-S)方程导出曲线坐标系下的抛物化稳定性方程(Parabolicstabilityequation,PSE),研究机翼非平行的可压缩边界层稳定性问题。发展了求解PSE的高效数值方法:引进法向变换,使得在临界层与壁面之间的扰动量变化最快的区域有更多法向网格点;采用包含边界邻域在内的完全四阶精度的法向差分格式,这对方程精确离散至关重要;以及全局法和局部法相结合的数值方法及其新的迭代公式,能大大加速收敛并得到更精确的特征值。算例分析研究了扰动增长因子和形状函数等演化曲线。  相似文献   

3.
采用抛物化稳定性方程的新方法研究稳定性的非平行问题,其控制方程从涡量形式的N-S方程导出,为提高计算精度和收敛速度,在法向采用高精度的高阶谱方法,结合边界层特征安排边界条件的方程,以及对无限区域数值问题作高效的代数变换处理,通过对预估校正迭代过程中推进步长有效的控制,以满足正规化条件,研究了不同类型压力梯度对稳定性的作用,由系列算例得到的增长率变化曲线和扰动中性曲线等,精确地给出了非平行性对流动稳定性的影响,计算的结果与相关数据符合甚好。  相似文献   

4.
介绍了绝对/对流不稳定性的理论框架,并应用于钝体尾流剪切层的稳定性分析研究中。钝体尾流可以认为是局部平行流,而局部平行流的稳定性分析可以归结为Orr-Sommerfeld方程的求解。O-S方程求解化为一个复广义矩阵问题AX=ωBX,并分别约化A,B为上Hessenberg阵和上三角阵,通过Chebyshev配置法可以求出特征值。最后对于Gauss尾流计算模型,给出了其在不同Reynolds下,流动  相似文献   

5.
二维抛物化稳定性方程计算   总被引:1,自引:0,他引:1  
针对二维抛物化稳定性方程(PSE)在法向上采用正交函数展开法进行了计算.在求解PSE的初始条件以及L0的中性曲线中应用了Chebyshev多项式展开.计算结果表明可以获得非常精确的解,证实了在PSE中应用Chebyshev多项式的有效性.  相似文献   

6.
利用LDV测试技术,在小型水槽中对零压力梯度的光滑平板边界层进行了平均速度剖面测量。利用测得的速度数据进行从壁面到对数律层尾区全壁面律的拟合求解获得壁面摩擦速度和其他边界层流动参数。在实验测量之外还开展了平板绕流CFD仿真分析,并将实验结果、仿真计算结果和平板经验公式计算结果进行比较。结果表明,基于LDV的全壁面律拟合求解平板表面边界层流动参数具有较高精度,结合仿真分析,可为利用平板开展水中MEMS壁面剪应力传感器标定提供理想的输入。  相似文献   

7.
对锥形燃烧室的冷态流场进行了数值模拟,采用Thompson的非正交贴你坐标系统,用坐标变换的方法处理锥形燃烧室曲线壁面边界,用SIMPLE算法求解连续方程和N-S方程。亲流模型采用工程上常用的k-ε模型。还运用贴体坐标系统数值研究了不同旋流数和不同进口紊流动能对湍流旋流流动的影响,并与实验结果相比较获得较满意的结果,对新型燃烧室的设计提供了理论依据。  相似文献   

8.
以平板边界层Blasius解为基本流,利用直接数值模拟的方法求解三维不可压缩N-S方程,研究了边界层中不同初始相位壁面局部微振动诱导大涡结构的过程。计算结果表明:壁面扰动初始相位为0或π,大涡结构的初始扰动速度场完全相反,初始相位为0时,大涡结构演化时无论其扰动速度幅值、高低速条纹结构,流向涡量均随时间的增加而增长,壁面平均切应力明显大于平板边界层流动,近壁平均速度剖面变得饱满;初始相位为π时,诱导形成的大涡结构较弱。壁面局部微振动可诱导边界层内形成大涡结构,大涡结构演化特性与局部微振动初始相位密切相关。  相似文献   

9.
以平衡流动作为热环境估算的依据,提出了用数值求解非平衡Navier-Stokes方程和实验测量热流值确定模型表面材料催化速率常数的方法。用5组分17个化学反应Durm-Kang空气化学模型和轴对称热化学非平衡Navier-Stokes方程,对激波管中球头和平头圆柱模型绕流流场进行了数值模拟,给出了驻点热流随催化速率常数变化的分布,并根据激波管实验测量的热流值确定了表面材料Pt、SiO2、Ni和某种飞船材料的催化速率常数,建立了数值分析高焓流动边界层催化特性的软件。  相似文献   

10.
采用局部喷、吸、喷和吸组合来模拟局部粗糙壁面,数值计算获得稳定的三维边界层的基本流.在此基础上研究了三维扰动波在该基本流中的空间演化问题,讨论了局部粗糙的形式、分布结构对三维扰动波的幅值增长率及流动稳定性影响.计算结果表明:三维局部粗糙对三维扰动波的增长、涡的形成都起着激励的作用.扰动波演化产生的平均流修正及局部粗糙诱导展向速度的存在,影响着流体运动稳定性.与光滑壁面相比,三维局部粗糙作用下扰动波的传播角度与相位角发生明显变化,而不同形式的二维局部粗糙壁面边界层显示出不同的稳定特性.  相似文献   

11.
把无网格算法发展用于求解涉及动边界的非定常粘性流动问题。在处理粘性流动的布点问题时,通过在远离物面的区域采用无粘流动计算时所用的各向同性点云,而在物面附近引入各向异性点云,从而在保证物面法线方向布点较密以准确模拟边界层的同时,有效控制了布点总量,减少了计算时间。对于动边界问题,本文在上述方法获得的初始布点的基础上,采用基于扰动衰减规律的点云移动技术,快速得到物面运动到其他位置时流场求解所需点云。在所获得的点云上,采用一种带权系数的二次极小曲面逼近方法来离散Navier-Stokes方程的空间导数,权系数的引入使得流场求解时对各向同性点云和各向异性点云无需分开考虑,而是采用统一的求解方法,从而简化了编程求解。用发展的无网格算法,结合Navier-Stokes方程求解双时间推进方法,并耦合Spalart-Allmaras湍流模型,先成功地模拟出NLR7301翼型后缘摆动诱发的非定常流,并通过与实验比较,验证了本方法.接着进行了NACA0012失速模拟,给出了动态失速过程,展示出用本文方法处理复杂动边界问题的效果。  相似文献   

12.
近年来,与高速飞行器相关的超声速/高超声速流动受到了极大关注。这类流动所具有的非定常性、强梯度和可压缩性对试验研究提出了挑战。纳米示踪的平面激光散射技术(NPLS)是2005年由作者所在的研究团队研发的非接触光学测试技术。它能够获得超声速三维流场的某个剖面的瞬态流动结构,并且具有较高的时空分辨率。目前,许多研究结果表明NPLS是研究超声速湍流的一项非常有效的技术。近年来,作者应用 NPLS 技术在超声速湍流研究中取得了较大的进展,并且基于NPLS开发了其它几种技术,比如基于 NPLS 的密度场测量技术(NPLS-DT),能够获得超声速流动的密度场信息并还能进一步得到雷诺应力分布。本文介绍了NPLS技术并回顾了其在超声速边界层、激波/边界层相互作用等流动中的应用。由于能够获得雷诺压力和湍动能等统计量, NPLS技术有望在发展可压缩湍流模型的研究中发挥作用。  相似文献   

13.
14.
利用氢气泡流动显示方法,对圆柱尾迹影响下的湍流边界层近壁区的低速流体条带特征进行了观察和分析。结果表明:与没有尾迹扰动的情况相比,在圆柱下游低速条带的平均展向间距减小,圆柱距离壁面较近时这种减小更显著,可达到22%;而当圆柱离壁面较远时,尾迹对条带平均间距的影响减弱,其最大减小量的出现向下游推迟。另一方面,尾迹的作用并未使条带间距的统计分布性质发生改变,它们仍然符合对数正态规律。  相似文献   

15.
超声速流中激波/湍流附面层干扰数值模拟   总被引:6,自引:1,他引:6  
采用修正的B/L湍流模型以及多块结构化网格求解了二维N-S方程。分别对超声速流和高超声速流中的激波/湍流附面层干扰进行了数值研究。本文首先研究了进口马赫数为2.96的超声速流。计算结果准确预测了入射斜激波在平直壁面引起湍流附面层分离的流动特征:分离点的反射激波、分离包引起的膨胀扇以及再附点的反射激波。计算的壁面压力分布与实验值吻合较好,计算的分离区长度与实验值比较有一定误差。本文还对进口马赫数为9.22的高超声速流中压缩角引起的激波/湍流附面层干扰进行了数值研究。计算结果与实验结果吻合较好。  相似文献   

16.
采用激光多普勒测速技术对光滑和粗糙槽道湍流特性进行了实验研究.粗糙元为二维横向V型沟槽,沟槽深度为0.8mm,沟槽间距为6.4mm,对应的槽道半高度与沟槽深度比为12.5.基于中线时均速度和槽道半高度的流动雷诺数范围为2740~17400.实验测量了包括时均速度、湍流强度、雷诺切应力和速度脉动偏斜因子和平坦因子在内的湍流统计量,结果表明沟槽型粗糙度对湍流的影响不仅局限于边界层内区,而是延伸到整个边界层范围.粗糙壁面上的粗糙度函数随雷诺数的增大而增大,时均亏损速度也较光滑壁面高.沟槽抑制了内区的流向湍流强度,同时增大了外区的湍流强度.粗糙壁面上的雷诺切应力高于光滑壁面,且与湍流强度一样表现出对雷诺数的依赖性.尽管沟槽型粗糙度对流向平坦因子影响不大,但对流向偏斜因子有显著影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号