首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   5篇
航空   6篇
航天技术   1篇
综合类   5篇
  2024年   1篇
  2014年   2篇
  2013年   1篇
  2010年   2篇
  2009年   5篇
  2007年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
超声速光学头罩流场的PIV研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在马赫数Ma=3. 8超声速风洞中.采用PIV(Particle Image Velocimetry,粒子图像测速)技术测量了超声速光学头罩流场的速度分布.PIV技术应用于超声速流场时,对系统的硬件配备、示踪粒子的跟随性以及PIV算法的精度有很高的要求.本文PIV系统选用高精度的同步控制器和高能量激光器;以纳米级粒径的粒子作为示踪粒子,通过斜激波响应实验分析了其在超声速流场中的跟随性;并采用多种高精度速度场算法对粒子图像进行处理.实验结果表明,示踪粒子在超声速流场中有很好的跟随性,采用的高精度速度场算法能够很好地反映超声速光学头罩流场的速度分布.  相似文献   
2.
超声速湍流机理的实验研究是一件十分困难的工作.在2000年以来,本研究小组在低噪声超声速混合层风洞研究、超声速流动精细结构测量技术研究方面取得了重要进展,这给超声速混合层湍流精细结构的研究奠定了基础.为了研究超声速混合层及其气动光学问题,在研制的超声速混合层风洞中,主要以基于纳米技术的平面激光散射技术(Nano-trace Planar Laser Scattering,简称NPLS)为基础,研究了几种对流马赫数的超声速混合层从层流到湍流转捩过程K-H不稳定涡的空间结构,以及K-H不稳定涡的空间结构随着时间的发展过程.实验结果清晰地反映了湍流混合的不稳定性与转捩的精细结构,以及转捩过程的展向精细结构.  相似文献   
3.
旋转喷管型面使超声速变马赫数风洞在单次运行过程中可连续调节实验区的马赫数,便于研究飞行器的机动过程、进气道起动过程中的气动问题。在控制喷管型面旋转过程中,流场参数能否线性变化是衡量超声速变马赫数风洞性能的一个重要指标。分析变马赫数风洞实验区流场参数的线性变化规律,利用弹簧光顺的动网格技术建立数值仿真模型,验证喷管位于马赫数3.041~3.215 范围所对应的位置时,实验区流场参数是否满足线性变化规律。结果表明:通过对喷管型面旋转的控制实现了风洞实验区流场参数的线性变化,动态计算结果与预期实验区流场参数线性变化规律吻合良好;在不同加速度的流场参数线性变化过程中,各时刻实验区的平均参数与预期参数之间的偏差均小于0.13%。  相似文献   
4.
在马赫数3.8的超声速风洞中,以高时空分辨率的基于纳米示踪的平面激光散射(NPLS,Nano-tracer based Planar Laser Scattering)技术为实验手段,研究了有无喷流的超声速光学头罩流场的精细结构,清晰地再现了流场中的激波、膨胀波、剪切层和湍流边界层等复杂结构.通过分析时间相关的流场NPLS图像,可以发现流场结构随时间的演化特性.结果表明:无喷流情况下光学窗口上方的大部分流场处于层流状态;有喷流情况下剪切层的层流区域较短,在很短的距离内转捩至湍流状态;喷流出口压力高于外界压力情况下剪切层的转捩位置比压力匹配情况下较为靠前,光学窗口上方的涡结构也较为复杂.比较而言,后者对气动光学性能的影响更大.  相似文献   
5.
超声速混合层增长速度定量测量与比较   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究超声速混合层增长速度,在自行设计的超声速湍流混合风洞中,分别采用常规连续光源与脉冲激光光源完成相应的纹影和NPLS实验.采用对比度调整和边缘检测方法对实验图片进行处理,得到了适合于定量测量混合层增长速度的图像.给出了相应的增长速度测量方法,并对相应的实验图像进行了定量测量与比较.  相似文献   
6.
为研究超声速混合层增长速度,在自行设计的超声速湍流混合风洞中,分别采用常规连续光源与脉冲激光光源完成相应的纹影和NPLS实验。采用对比度调整和边缘检测方法对实验图片进行处理,得到了适合于定量测量混合层增长速度的图像。给出了相应的增长速度测量方法,并对相应的实验图像进行了定量测量与比较。  相似文献   
7.
NPLS技术及其在高速飞行器气动研究中的应用   总被引:1,自引:0,他引:1  
近年来,与高速飞行器相关的超声速/高超声速流动受到了极大关注。这类流动所具有的非定常性、强梯度和可压缩性对试验研究提出了挑战。纳米示踪的平面激光散射技术(NPLS)是2005年由作者所在的研究团队研发的非接触光学测试技术。它能够获得超声速三维流场的某个剖面的瞬态流动结构,并且具有较高的时空分辨率。目前,许多研究结果表明NPLS是研究超声速湍流的一项非常有效的技术。近年来,作者应用 NPLS 技术在超声速湍流研究中取得了较大的进展,并且基于NPLS开发了其它几种技术,比如基于 NPLS 的密度场测量技术(NPLS-DT),能够获得超声速流动的密度场信息并还能进一步得到雷诺应力分布。本文介绍了NPLS技术并回顾了其在超声速边界层、激波/边界层相互作用等流动中的应用。由于能够获得雷诺压力和湍动能等统计量, NPLS技术有望在发展可压缩湍流模型的研究中发挥作用。  相似文献   
8.
在马赫数Ma-3.8超声速风洞中,采用PIV(Particle Image Velocimetry,粒子图像测速)技术测量了超声速光学头罩流场的速度分布。PIV技术应用于超声速流场时,对系统的硬件配备、示踪粒子的跟随性以及PIV算法的精度有很高的要求。本文PIV系统选用高精度的同步控制器和高能量激光器;以纳米级粒径的粒子作为示踪粒子,通过斜激波响应实验分析了其在超声速流场中的跟随性;并采用多种高精度速度场算法对粒子图像进行处理。实验结果表明,示踪粒子在超声速流场中有很好的跟随性,采用的高精度速度场算法能够很好地反映超声速光学头罩流场的速度分布。  相似文献   
9.
超声速弹头凹型光学头罩流动显示研究   总被引:4,自引:0,他引:4  
在自行设计的Ma=3.8超声速风洞中,采用基于纳米技术的平面激光散射(NPLS)方法对超声速弹头凹型光学头罩流场进行了流动显示实验。高时空分辨率的NPLS图像再现了激波、膨胀波、边界层及尾迹等流场结构。观察到了边界层的产生、发展及转捩过程。通过对时间相关图像的分析,可以精确测定边界层内大尺度结构的几何特征和时间演化特征。  相似文献   
10.
在自行设计的Mα=3.8超声速风洞中,采用基于纳米技术的平面激光散射(NPLS)方法对超声速弹头凹型光学头罩流场进行了流动显示实验.高时空分辨率的NPLS图像再现了激波、膨胀波、边界层及尾迹等流场结构.观察到了边界层的产生、发展及转捩过程.通过对时间相关图像的分析,可以精确测定边界层内大尺度结构的几何特征和时间演化特征.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号