首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Abstract

In this paper we study the computational complexity of Fuzzy Qualitative Temporal Algebra (QA fuz ), a framework that combines qualitative temporal constraints between points and intervals, and allows modelling vagueness and uncertainty. Its tractable fragments can be identified by generalizing the results obtained for crisp Constraint Satisfaction Problems (CSPs) to fuzzy CSPs (FCSPs); to do this, we apply a general methodology based on the notion of α-cut. In particular, the results concerning the tractability of Qualitative Algebra QA, obtained in a recent study by different authors, can be extended to identify the tractable algebras of the fuzzy Qualitative Algebra QA fuz in such a way that the obtained set is maximal, namely any maximal tractable fuzzy algebra belongs to this set.  相似文献   

2.
Marmann RA 《Acta Astronautica》1997,40(11):815-820
For more than 15 years, Spacelab, has provided a laboratory in space for an international array of experiments, facilities, and experimenters. In addition to continuing this important work, Spacelab is now serving as a crucial stepping-stone to the improved science, improved operations, and rapid access to space that will characterize International Space Station. In the Space Station era, science operations will depend primarily on distributed/remote operations that will allow investigators to direct science activities from their universities, facilities, or home bases. Spacelab missions are a crucial part of preparing for these activities, having been used to test, prove, and refine remote operations over several missions. The knowledge gained from preparing these Missions is also playing a crucial role in reducing the time required to put an experiment into orbit, from revolutionizing the processes involved to testing the hardware needed for these more advanced operations. This paper discusses the role of the Spacelab program and the NASA Marshall Space Flight Center- (MSFC-) managed missions in developing and refining remote operations, new hardware and facilities for use on Space Station, and procedures that dramatically reduce preparation time for flight.  相似文献   

3.
DYL电路为模糊控制器的硬件化提供了新手段。本文根据模糊控制器的算法原理,提出了用DYL电路实现模糊控制器的理论方案,并针对理论方案电路复杂的缺点,介绍了三种简化方案,并对它们进行了分析和比较,其中的两种方案还进行了仿真实验。本文给出的例子是对某型导弹横侧向运动的模糊控制,意在探索模糊控制在航空中应用的可能性。  相似文献   

4.
The European Space Agency (ESA) contribution to the International Space Station (ISS) goes much beyond the delivery of hardware like the Columbus Laboratory, its payloads and the Automated Transfer Vehicles. ESA Astronauts will be members of the ISS crew. ESA, according to its commitments as ISS international partner, will be responsible to provide training on its elements and payloads to all ISS crewmembers and medical support for ESA astronauts. The European Astronaut Centre (EAC) in Cologne has developed over more than a decade into the centre of expertise for manned space activities within ESA by contributing to a number of important co-operative spaceflight missions. This role will be significantly extended for ISS manned operations. Apart from its support to ESA astronauts and their onboard operations, EAC will have a key role in training all ISS astronauts on ESA elements and payloads. The medical support of ISS crew, in particular of ESA astronauts has already started. This paper provides an overview on status and further plans in building up this homebase function for ESA astronauts and on the preparation towards Training Readiness for ISS crew training at EAC, Cologne. Copyright 2001 by the European Space Agency. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Released to IAF/IAA/AIAA to publish in all forms.  相似文献   

5.
Extravehicular activity training and hardware design consideration   总被引:3,自引:0,他引:3  
Preparing astronauts to perform the many complex extravehicular activity (EVA) tasks required to assemble and maintain Space Station will be accomplished through training simulations in a variety of facilities. The adequacy of this training is dependent on a thorough understanding of the task to be performed, the environment in which the task will be performed, high-fidelity training hardware and an awareness of the limitations of each particular training facility. Designing hardware that can be successfully operated, or assembled, by EVA astronauts in an efficient manner, requires an acute understanding of human factors and the capabilities and limitations of the space-suited astronaut. Additionally, the significant effect the microgravity environment has on the crew members' capabilities has to be carefully considered not only for each particular task, but also for all the overhead related to the task and the general overhead associated with EVA. This paper will describe various training methods and facilities that will be used to train EVA astronauts for Space Station assembly and maintenance. User-friendly EVA hardware design considerations and recent EVA flight experience will also be presented.  相似文献   

6.
Space based experiments involving the use of tethers were examined with a view to identifying the implications of unscheduled events such as tether severance and interference between the tether and other hardware. It is the authors opinion that these type of events, which have important consequences for the operation of tethers in space, have received insufficient consideration in the extensive literature on the subject. In particular, the investigation of the interference event appears to be completely new. The examination focussed on tether experiments planned for the forthcoming International Space Station (ISS). Results were obtained through the use of a highspeed, non-linear, computer simulation model specifically designed for use with tethered satellite systems. Simulations showed that both severance and interference were possible during retrieval of the tether, particularly if ‘skip-rope’ motion is initiated. The motion following each of these incidents is predicted and shows that these unscheduled events are potentially very hazardous for the ISS. While the results of these simulations are not directly applicable to specific operations on the ISS, they fulfill the primary purpose of this paper which is the demonstration of this new technology.  相似文献   

7.
Dextre: Improving maintenance operations on the International Space Station   总被引:1,自引:0,他引:1  
The Special Purpose Dexterous Manipulator (SPDM), known as “Dextre”, is currently slated to launch in February 2008 for deployment on the International Space Station (ISS) as the final component of Canada's Mobile Servicing System (MSS). Dextre's primary role on the Space Station is to perform repair and replacement (R&R) maintenance tasks on robotically compatible hardware such as Orbital Replaceable Units (ORUs), thereby eventually easing the burden on the ISS crew.This burden on the on-orbit crew translates practically into crew time being a limited resource on the ISS, and as such, finding ways to assist the crew in performing their tasks or offloading the crew completely when appropriate is a bonus to the ISS program. This is already accomplished very effectively by commanding as many non-critical robotics tasks as possible, such as powering up and free-space maneuvering of the Space Station Remote Manipulator System (SSRMS), known as “Canadarm2”, from the Ground.Thus, beyond its primary role, and based on an increasing clarity regarding the challenges of external maintenance on the ISS, Dextre is being considered for use in a number of ways with the objective of improving ISS operations while reducing and optimizing the use of crew time through the use of ground control for various tasks, pre-positioning hardware, acting as a temporary storage platform to break an Extra Vehicular Activity (EVA) day into manageable timelines, and extending the physical reach and range of the Canadarm2.This paper discusses the planned activities and operations for Dextre an rationale for how these will help optimize the use of crew resources on the ISS.  相似文献   

8.
In the past, one of the major problems in performing scientific investigations in space has been the high cost of developing, integrating, and transporting scientific experiments into space. The limited resources of unmanned spacecraft, coupled with the requirements for completely automated operations, was another factor contributing to the high costs of scientific research in space. In previous space missions after developing, integrating and transporting costly experiments into space and obtaining successful data, the experiment facility and spacecraft have been lost forever, because they could not be returned to earth. The objective of this paper is to present how the utilization of the Spacelab System will result in cost benefits to the scientific community, and significantly reduce the cost of space operations from previous space programs.The following approach was used to quantify the cost benefits of using the Spacelab System to greatly reduce the operational costs of scientific research in space. An analysis was made of the series of activities required to combine individual scientific experiments into an integrated payload that is compatible with the Space Transportation System (STS). These activities, including Shuttle and Spacelab integration, communications and data processing, launch support requirements, and flight operations were analyzed to indicate how this new space system, when compared with previous space systems, will reduce the cost of space research. It will be shown that utilization of the Spacelab modular design, standard payload interfaces, optional Mission Dependent Equipment (MDE), and standard services, such as the Experiment Computer Operating System (ECOS), allow the user many more services than previous programs, at significantly lower costs. In addition, the missions will also be analyzed to relate their cost benefit contributions to space scientific research.The analytical tools that are being developed at MSFC in the form of computer programs that can rapidly analyze experiment to Spacelab interfaces will be discussed to show how these tools allow the Spacelab integrator to economically establish the payload compatibility of a Spacelab mission.The information used in this paper has been assimilated from the actual experience gained in integrating over 50 highly complex, scientific experiments that will fly on the Spacelab first and second missions. In addition, this paper described the work being done at the Marshall Space Flight Center (MSFC) to define the analytical integration tools and techniques required to economically and efficiently integrate a wide variety of Spacelab payloads and missions. The conclusions reached in this study are based on the actual experience gained at MSFC in its roles of Spacelab integration and mission managers for the first three Spacelab missions. The results of this paper will clearly show that the cost benefits of the Spacelab system will greatly reduce the costs and increase the opportunities for scientific investigation from space.  相似文献   

9.
We investigate the relation between nontrivial spatial concepts such as holes and string loops from a qualitative spatial reasoning perspective. In particular, we concentrate on a family of puzzles dealing with this kind of objects and explain how a loop formed in a string shows a similar behavior to a hole in an object, at least regarding the qualitative constraints it imposes on the solution of the puzzle. Unlike regular holes, however, we describe how string loops can be dynamically created and destroyed depending on the actions on the string. Furthermore, under a Knowledge Representation point of view, we provide a formalization that allows the different puzzle states to be described in terms of string crossings and loops, together with the actions that can be executed for a state transition and the complex effects they cause on the state representation. This implies the consideration of a formal representation of the side effects of actions that create or destroy string loops and the soundness of this representation with respect to the more general representation of string states in knot theory.  相似文献   

10.
液体推进剂贮运可靠性模糊故障树方法研究   总被引:2,自引:0,他引:2  
对液体推进剂在贮运过程中发生的泄漏情况进行了深入分析,建立了故障树模型,并讨论了底事件对泄漏事件的影响。针对实际情况下泄漏事件的发生概率具有模糊性和不确定性的特点,将模糊集理论引入故障树分析法,将基本底事件发生概率描述为一模糊数,从而估算出整个系统的模糊故障率。该方法能快速准确的检测和诊断液体推进剂贮运的潜在故障,对推进剂安全贮运有一定裨益。  相似文献   

11.
The International Space Station (ISS), as the largest international science and engineering program in history, features unprecedented technical, cost, scheduling, managerial, and international complexity. A number of major milestones have been accomplished to date, including the construction of major elements of flight hardware, the development of operations and sustaining engineering centers, astronaut training, and eight Space Shuttle/Mir docking missions. International partner contributions and levels of participation have been baselined, and negotiations and discussions are nearing completion regarding bartering arrangements for services and new hardware. As ISS is successfully executed, it can pave the way for more inspiring cooperative achievements in the future.  相似文献   

12.
卫星ATM交换系统中一种连接允许控制算法的改进   总被引:3,自引:0,他引:3  
黎军  周诠 《宇航学报》2006,27(3):513-517
对于卫星ATM交换系统,连接允许控制(Connection Admission Control,CAC)是一个重要部分。针对卫星ATM中的一种连接允许控制算法一快速缓存分配法可能出现过高的信元丢失率提出了一种利用缓存器进行子波束再分配的改进方法,并采用流体流模型对改进后CAC算法进行了分析和仿真。结果表明,随着该改进方法所设置的缓存器容量的增加,信元丢失率明显下降。  相似文献   

13.
The French Space Agency (CNES) is currently operating thirteen satellites among which five remote sensing satellites. This fleet is composed of two civilian (SPOT) and three military (HELIOS) satellites and it has been recently completed by the first PLEIADES satellite which is devoted to both civil and military purposes. The CNES operation board decided to appoint a Working Group (WG) in order to anticipate and tackle issues related to the emergency End Of Life (EOL) operations due to unexpected on-board events affecting the satellite. This is of particular interest in the context of the French Law on Space Operations (LSO), entered in force on Dec. 2010, which states that any satellite operator must demonstrate its capability to control the space vehicle whatever the mission phase from the launch up to the EOL. Indeed, after several years in orbit the satellites may be affected by on-board anomalies which could damage the implementation of EOL operations, i.e. orbital manoeuvres or platform disposal. Even if automatic recovery actions ensure autonomous reconfigurations on redundant equipment, i.e. setting for instance the satellite into a safe mode, it is crucial to anticipate the consequences of failures of every equipment and functions necessary for the EOL operations. For this purpose, the WG has focused on each potential anomaly by analysing: its emergency level, as well as the EOL operations potentially inhibited by the failure and the needs of on-board software workarounds… The main contribution of the WG consisted in identifying a particular satellite configuration called “minimal Withdrawal From Service (WFS) configuration”. This configuration corresponds to an operational status which involves a redundancy necessary for the EOL operations. Therefore as soon as a satellite reaches this state, a dedicated steering committee is activated and decides of the future of the satellite with respect to three options: a/. the satellite is considered safe and can continue its mission using the redundancy, b/. the EOL operations must be planned within a mid-term period, or c/. the EOL operations must be implemented as soon as possible by the operational teams. The paper describes this management and operational process illustrated with study cases of failures on SPOT and PLEIADES satellites corresponding to various emergency situations.  相似文献   

14.
控制软件可靠性设计和评估方法   总被引:4,自引:0,他引:4  
石柱 《航天控制》2004,22(1):58-62
介绍软件可靠性的定义 ,探讨软件失效的机理并阐述设计一个可靠控制软件的原则 ,提出一种基于三角形模糊数算术运算的软件可靠性评估方法。  相似文献   

15.
张欢  张成  宋晓东 《宇航学报》2022,43(9):1152-1162
针对索式火箭回收着陆系统中摩擦缓冲装置的缓冲能力和调节能力有限的问题,提出了一种基于最小二乘法和系统动力学特性的液压缓冲装置反问题设计方法。该方法通过对液压缓冲装置中控制阀凸轮外形和储能器初始压强的设计来调节着陆火箭运动学特性,使火箭按照特定的运动学特性在有限的缓冲位移内减速至静止稳定且缓冲加速度最小。对索式火箭回收着陆系统建立精准高效的多体动力学模型,并针对不同的工况进行仿真校验。仿真结果表明根据所提反问题设计方法设计的索式火箭回收着陆系统能够按照特定的运动学特性减速缓冲着陆火箭,具有较强的减速缓冲能力;针对不同质量和着陆位置偏差的着陆火箭,具有自动调整液压阻力保持火箭相同的运动学特性的能力。  相似文献   

16.
针对某光学载荷薄板反射面面形调整需求,对一种新型精密微调驱动器开展了集成设计研究。分析了柔性太阳翼冷热交变对敏感载荷的影响,设计了一种基于巨磁致伸缩材料(GMM)的主动补偿驱动器,对驱动器关键部件进行了优化。建立了驱动器的动力学模型,并利用模糊自适应PID算法对其进行闭环控制。仿真结果表明:设计的驱动器能实现较大的行程、较高的定位精度,可用于面形变形补偿。  相似文献   

17.
基于离散方波变换的脉冲星微弱信号周期性检测   总被引:1,自引:1,他引:0  
为满足X射线脉冲星深空导航系统对脉冲星微弱信号周期性检测的要求,提出了一种基于离散方波变换(DSWT)的周期信号检测算法,并给出了其硬件实现方法.首先,通过对比DSWI和FFI变换核的相似性,证明了DSWT算法进行周期性检测的可行性,同时,研究了DSWT对白噪声的抑制作用;其次,DSWT的变换核仅取+1或-1,更适合硬件电路实现,给出了该算法的FPGA实现方法;最后,采用以Xilinx Spartan-3系列FPGA芯片XC3S2000为核心的开发板组成实验仿真系统,分别对实测和仿真脉冲星数据进行实验.结果表明:1.该算法可检测信噪比低于FFT算法;2.在信号输入完毕后3个时钟周期内即可得出计算结果,耗时比FFT算法少三个数量级;3.实现该算法所需的硬件资源少于FFT算法.  相似文献   

18.
ABSTRACT

The ability to mentally represent spatial information is a fundamental cognitive process. To many people, this process feels a bit like visual perception, hence the term ‘spatial visualization’. In this paper, we describe a method for measuring the accuracy of spatial visualization, specifically visualization of a complex path in imaginary space. A critical feature of this method (called Path Visualization) is that it relies on the detection of intersections in a visualized path. Intersection detection is an inherently spatial task that requires a spatial representation. In this paper, we show how the Path Visualization method works, and how it can be customized to address several key research issues in human spatial cognition.  相似文献   

19.
刘旭春  易武  张正禄  杨军 《宇航学报》2007,28(2):310-314,337
硬件延迟是利用GPS进行TEE测量时最大的误差源,其最大影响可达100多TECU。为获得更准确的TEE数值,GPS系统硬件延迟的计算精度显得尤为重要。利用2001年4月15日太阳耀斑爆发时的GPS观测数据,首先利用传统方法对硬件延迟进行了计算和分析,并提出了一种硬件延迟解算的新观点,实验数据表明该方法具有较好的效果,其精度高于夜间数据的计算结果,同时克服了夜间数据难以获取的缺点。  相似文献   

20.
本文提出了一种基于VHDL描述、FPGA实现的模糊PID控制器的设计,使用自顶向下的设计流程完成了控制器的VHDL设计,并在一个具体的FPGA芯片上实现了该控制器.由于采用了模糊自整定参数技术和增量式PID算法,本设计既降低了FPGA的资源耗费,又改善了传统PID控制器的控制性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号