首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In November 2000, the National Aeronautics and Space Administration (NASA) and its partners in the International Space Station (ISS) ushered in a new era of space flight: permanent human presence in low-Earth orbit. As the culmination of the last four decades of human space flight activities. the ISS focuses our attention on what we have learned to date. and what still must be learned before we can embark on future exploration endeavors. Space medicine has been a primary part of our past success in human space flight, and will continue to play a critical role in future ventures. To prepare for the day when crews may leave low-Earth orbit for long-duration exploratory missions, space medicine practitioners must develop a thorough understanding of the effects of microgravity on the human body, as well as ways to limit or prevent them. In order to gain a complete understanding and create the tools and technologies needed to enable successful exploration. space medicine will become even more of a highly collaborative discipline. Future missions will require the partnership of physicians, biomedical scientists, engineers, and mission planners. This paper will examine the future of space medicine as it relates to human space exploration: what is necessary to keep a crew alive in space, how we do it today, how we will accomplish this in the future, and how the National Aeronautics and Space Administration (NASA) plans to achieve future goals.  相似文献   

2.
The International Space Station (ISS) is the result of collaboration between 15 countries [Inter-Governmental Agreement (IGA) between the Governments of Canada, the United States of America, Japan, Russia and ESA member States, concerning co-operation on the civil International Space Station, 1998]. Originally planned as a scientific facility, a shift in policy of the partners has recently occurred towards commercialisation of the Station. This article is a response to this policy shift. Based on a report prepared by a Master of Space Studies class at ISU, it set outs to identify the major constraints in which the potential commercial user must operate and proposes solutions for both commercial user and the partner space agencies to facilitate this commercialisation process. At a time when spacefaring nations face reduced fiscal resources and increasing pressure from their constituencies to justify the huge costs of the ISS, commercialising utilisation seems a logical solution. Clearly, successful commercialisation can help recover some of the development and operating costs of the ISS. The structure of the article is divided into two main parts. The first part proposes new solutions to existing constraint to ISS commercialisation in areas of policy, law, technology and business. Its conclusions are integrated and unified into A New Approach towards ISS commercialisation. This approach is then applied in part two to two case studies: the International Space Satellite Servicing Station (I4S) and protein crystallisation. The article then concludes with a recommended approach to the future of ISS commercialisation.  相似文献   

3.
Space ethics and protection of the space environment   总被引:1,自引:1,他引:0  
Mark Williamson   《Space Policy》2003,19(1):47-52
The construction of the International Space Station in low Earth orbit and the formulation of plans to search for life on Mars indicate that mankind is intent on making the space environment part of its domain. Publicity surrounding space tourism, in-space ‘burials’ and the sale of lunar ‘real estate’ suggests that, some time in the 21st century, the space environment will become an extension of our current terrestrial business and domestic environment. This prompts the question of our collective attitude towards the space environment and the degree to which we should regulate its use and protect it for future generations. This article offers a pragmatic view of an ethical code for space exploration and development, as far as it relates to the protection of the space environment.  相似文献   

4.
The envisaged future space research programmes, whether in the field of space exploration or Earth observation are becoming more and more technically complicated and so costly that a single nation can hardly afford to realize them. Major non-European space-faring nations, China and India will progressively play an important role besides US, Russia and Japan. The Space Advisory Group of the European Commission recommended that the European Commission supports within Horizon 2020 a comprehensive Robotic Mars-Exploration Programme under European leadership that should become an essential element of a coordinated international space research programme. The International Space Station (ISS) experience shows that cooperative space programmes build links between industries and laboratories from around the world, which then further develop in non-space related activities, with positive impact on the economy and scientific research. Strategies need to be developed to mitigate the gradual increasing risks incurred by climate change. In order to lower their entry barrier to engage in space emerging and developing space nations need to be included in cooperative space programmes. We present the recommendations of the Space Advisory Group of the European Commission concerning Europe's participation to global space endeavours.  相似文献   

5.
Issues about commercialization of space have been a growing concern in the past decade for the space community. This paper focuses on the work from a team of 51 students attending the Summer Session Program of the International Space University in Bremen, Germany. CASH 2021 (Commercial Access and Space Habitation) documents a plan that identifies commercial opportunities for space utilization that will extend human presence in space, and will chart the way forward for the next 20 years. The group selected four commercial sectors that show the most promise for the future: tourism, entertainment, space system service, assembly and debris removal, and research and development/production. The content of this document presents the results of their research. Historical activities in each of the commercial sectors are reviewed along with the current market situation. To provide a coherent background for future commercialization possibilities a scenario has been developed. This scenario includes a postulated upon ideal future and includes social, political and economic factors that may affect the space industry over the timeline of the study. The study also presents a roadmap, within the limited optimistic scenario developed, for the successful commercialization of space leading to future human presence in space. A broad range of commercially viable opportunities, not only within the current limits of the International Space Station, but also among the many new developments that are expected by 2021 are discussed.  相似文献   

6.
《Acta Astronautica》2007,60(4-7):329-335
Based on anecdotal reports from astronauts and cosmonauts, studies of space analog environments on Earth, and our previous research on the Mir Space Station, a number of psychosocial issues have been identified that can lead to problems during long-duration space expeditions. Several of these issues were studied during a series of missions to the International Space Station. Using a mood and group climate questionnaire that was completed weekly by crewmembers in space and personnel in mission control, we found no evidence to support the presence of predicted decrements in well-being during the second half or in any specific quarter of the missions. The results did support the predicted displacement of negative feelings to outside supervisors among both crew and ground subjects. There were several significant differences in mood and group perceptions between Americans and Russians and between crewmembers and mission control personnel. Crewmembers related cohesion to the support role of their leader, and mission control personnel related cohesion to both the task and support roles of their leader. These findings are discussed with reference to future space missions.  相似文献   

7.
When the idea of a large space station in Low Earth Orbit (LEO) was conceived in the 1980s, it was primarily planned as an orbiting laboratory for microgravity research. Some even thought of it as an industrial plant in space. Whereas the latter did not materialize because of various reasons, the former is absolutely true when you talk about the International Space Station (ISS). Since the transition to a six astronaut crew in 2009 and the completion of its assembly in 2011, it has been intensively used as laboratory in a wide field of scientific topics. Experiments conducted on ISS have yielded first class results in biology, physiology, material science, basic physics, and many more. While its role as a laboratory in space is widely recognized, the awareness for its potential for preparing future exploration missions beyond LEO is just increasing. This paper provides information on how the ISS programme contributes to future exploration efforts, both manned and unmanned. It highlights the work that has been done or is currently underway in the fields of technology, operations, and science. Further potentials and future projects for exploration preparation are also shown. A special focus lies on experiments and projects primarily funded by the German Aerospace Center (DLR) or with strong German participation in the science team.  相似文献   

8.
Trinh EH 《Acta Astronautica》2003,53(4-10):317-327
The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities.  相似文献   

9.
Since the establishment of the United Nations Committee on the Peaceful Exploration and Uses of Outer Space (COPUOS) in 1959, many actions that affect the advancement of the space frontier have been taken, within and outside COPUOS, in the interest of the global community, but without much input from Africa. Yet a number of African countries have joined those with assets in space, albeit without the necessary infrastructure on the ground. These actions vary in scope, in importance and in participation; however, they affect us all. Examples include the legal instruments that are in operation today for the exploration and peaceful uses of outer space, sustainability of the outer space environment and the Global Exploration Strategy– Framework for Coordination (GES–FC), conceived by 14 spacefaring nations; this laid out the details needed for an active global space exploration programme. This paper reflects on existing space-related regional cooperation arrangements at the inter-governmental level, including the African Leadership Conference on Space Science and Technology for Sustainable Development (ALC). Noting that, despite UN General Assembly endorsement of the need for developing countries to have access to the International Space Station (ISS), almost all in Africa have not, it asks what Africa might gain from such an experience. The paper concludes with an examination of where and why Africa needs to focus its immediate space-related efforts – on the ground here on Earth or in outer space?  相似文献   

10.
Linda Billings   《Space Policy》2006,22(4):249-255
The US civilian space program is focused on planning for a new round of human missions beyond Earth orbit, to realize a ‘vision’ for exploration articulated by President George W. Bush. It is important to examine this ‘vision’ in the broader context of the global enterprise of 21st century space exploration. How will extending a human presence into the Solar System affect terrestrial society and culture? What legal, ethical and other value systems should govern human activities in space? This paper will describe the current environment for space policy making and possible frameworks for future space law, ethics and culture. It also proposes establishment of a World Space Conference to aid deliberations on the above.  相似文献   

11.
Through experiences at the International Space University's 1995 Summer Session, the authors became aware of generational differences of opinion with regard to visions for future space activities. The faculty members had expansionary visions of space exploration and colonization, while the students, having grown up in a very different environment, had concerns which centered around using space to improve life on Earth. This paper addresses possible explanations for these different perspectives. The visions of this younger generation are those which will shape the space policy of the future and are even beginning to shape it today.  相似文献   

12.
Doetsch K 《Acta Astronautica》2005,57(2-8):661-675
The paper addresses the evolution of the Canadian Space Station Program between 1981 and 2003. Discussions with potential international partners, aimed at jointly developing the current International Space Station program, were initiated by NASA in 1982. Canada chose, through the further development of the technologies of Canadarm on the space shuttle, to provide and operate an advanced and comprehensive external robotics system for space station, and to use the space station for scientific and commercial purposes. The program was to become a corner-stone of the new Canadian Space Agency. The development phase of the Canadian Space Station Program has been completed and two of the three major elements are currently operational in space.  相似文献   

13.
M Reichert 《Acta Astronautica》2001,49(3-10):495-522
After the Apollo Moon program, the international space station represents a further milestone of humankind in space, International follow-on programs like a manned return to the Moon and a first manned Mars Mission can be considered as the next logical step. More and more attention is also paid to the topic of future space tourism in Earth orbit, which is currently under investigation in the USA, Japan and Europe due to its multibillion dollar market potential and high acceptance in society. The wide variety of experience, gained within the space station program, should be used in order to achieve time and cost savings for future manned programs. Different strategies and roadmaps are investigated for space tourism and human missions to the Moon and Mars, based on a comprehensive systems analysis approach. By using DLR's software tool FAST (Fast Assessment of Space Technologies), different scenarios will be defined, optimised and finally evaluated with respect to mission architecture, required technologies, total costs and program duration. This includes trajectory analysis, spacecraft design on subsystem level, operations and life cycle cost analysis. For space tourism, an expected evolutionary roadmap will be described which is initiated by short suborbital tourism and ends with visionary designs like the Space Hotel Berlin and the Space Hotel Europe concept. Furthermore the potential space tourism market, its economic meaning as well as the expected range of the costs of a space ticket (e.g. $50,000 for a suborbital flight) will be analysed and quantified. For human missions to the Moon and Mars, an international 20 year program for the first decades of the next millennium is proposed, which requires about $2.5 Billion per year for a manned return to the Moon program and about $2.6 Billion per year for the first 3 manned Mars missions. This is about the annual budget, which is currently spend by the USA only for the operations of its Space Shuttle fleet which generally proofs the affordability of such ambitious programs after the build-up of the International Space Station, when corresponding budget might become again available.  相似文献   

14.
The International Space Station (ISS) is no longer a paper program, focused on design, development and planning. It is an operational program, with hardware soon to be launched and ground systems in place. Additional modules, components and elements are now under construction in almost all of the 16 ISS International Partner and Participant countries, with metal being bent, software being written, and testing ongoing. Crew members for the first four crews are in training in the U.S. and Russia, with the first crew launching in mid 1999. Mission control centers are fully functioning in Houston and Moscow, with operations centers in St. Hubert, Darmstadt, Tsukuba, Turino, and Huntsville going on line as they are required.

The International Space Station, as the largest international civil program in history, features unprecedented technical, managerial, and international complexity. Seven international partners and participants encompassing 15 countries are involved in the ISS. Each partner is contributing and will be operating separate pieces of hardware, to be integrated on-orbit into a single orbital station. Mission control centers, launch vehicles, astronauts/cosmonauts, and support services will be provided by partners across the globe, but must function in a coordinated, integrated fashion. This paper will review the accomplishments of the ISS Program and each of the Partners and Participants over the past year, focusing on completed milestones and hardware. It will also give a status report on the development of the remainder of the ISS modules and components by each Partner and Participant, and discuss upcoming challenges.  相似文献   


15.
Several nations are currently engaging in or planning for robotic and human space exploration programs that target the Moon, Mars and near-Earth asteroids. These ambitious plans to build new space infrastructures, transport systems and space probes will require international cooperation if they are to be sustainable and affordable. Partnerships must involve not only established space powers, but also emerging space nations and developing countries; the participation of these new space actors will provide a bottom-up support structure that will aid program continuity, generate more active members in the space community, and increase public awareness of space activities in both developed and developing countries. The integration of many stakeholders into a global space exploration program represents a crucial element securing political and programmatic stability. How can the evolving space community learn to cooperate on a truly international level while engaging emerging space nations and developing countries in a meaningful way? We propose a stepping stone approach toward a global space exploration program, featuring three major elements: (1) an international Earth-based field research program preparing for planetary exploration, (2) enhanced exploitation of the International Space Station (ISS) enabling exploration and (3) a worldwide CubeSat program supporting exploration. An international Earth-based field research program can serve as a truly global exploration testbed that allows both established and new space actors to gain valuable experience by working together to prepare for future planetary exploration missions. Securing greater exploitation of the ISS is a logical step during its prolonged lifetime; ISS experiments, partnerships and legal frameworks are valuable foundations for exploration beyond low Earth orbit. Cooperation involving small, low-cost missions could be a major stride toward exciting and meaningful participation from emerging space nations and developing countries. For each of these three proposed stepping stones, recommendations for coordination mechanisms are presented.  相似文献   

16.
《Space Policy》2014,30(3):170-173
The Global Exploration Roadmap (GER) is driven by several goals and objectives that include space science, the search for life as well as preparatory science activities to enable human space exploration. The Committee on Space Research (COSPAR), through its Commissions and Panels provides an international forum that supports and promotes space exploration worldwide. COSPAR's Panel on Exploration (PEX) investigates a stepwise approach of preparatory research on Earth and in Low Earth Orbit (LEO) to facilitate a future global space exploration program. We summarize recent activities and workshops of PEX in support of the GER.  相似文献   

17.
The links between Earth and space exploration occur across a broad spectrum, from the use of satellite technology to support environmental monitoring and habitat protection to the study of extreme environments on Earth to prepare for the exploration of other planets. Taking the view that Earth and space exploration are part of a mutually beneficial continuum is in contrast to the more traditionally segregated view of these areas of activity. In its most polarized manifestation, space exploration is regarded as a waste of money, distracting from solving problems here at home, while environmental research is seen to be introspective, distracting from expansive visions of exploring the frontier of space. The Earth and Space Foundation was established in 1994 to help further mutually beneficial links by funding innovative field projects around the world that work at the broad interface between environmental and space sciences, thus encouraging the two communities to work together to solve the challenges facing society. This paper describes the work of the foundation and the philosophy behind its programmes.  相似文献   

18.
国际空间站是目前在轨运行的最大空间平台,具有系统体积庞大、构型复杂、接口众多、载荷种类不确定等特点。因此,系统级力学试验、热试验以及组件环境试验对空间站的设计和工艺验证非常重要。文章调研了国际空间站各舱段的系统级力学试验、热试验以及组件环境试验情况,以期为我国空间站的地面试验系统设计、研制提供参考。  相似文献   

19.
“国际空间站”建造十年经验初探   总被引:4,自引:2,他引:2  
就"国际空间站"边建造、边应用十年来所获得的经验与教训,从系统设备、居住环境、物资补给、作息制度、健康保障、人的作用、出舱活动及国际合作8个方面进行了简要的论述,对后来的空间站建设及未来的长期载人航天飞行具有重要的参考价值。  相似文献   

20.
Uri JJ  Lebedev ON 《Acta Astronautica》2001,48(5-12):845-851
The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号