首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Logistical constraints during long-duration space expeditions will limit the ability of Earth-based mission control personnel to manage their astronaut crews and will thus increase the prevalence of autonomous operations. Despite this inevitability, little research exists regarding crew performance and psychosocial adaptation under such autonomous conditions. To this end, a newly-initiated study on crew management systems was conducted to assess crew performance effectiveness under rigid schedule-based management of crew activities by Mission Control versus more flexible, autonomous management of activities by the crews themselves. Nine volunteers formed three long-term crews and were extensively trained in a simulated planetary geological exploration task over the course of several months. Each crew then embarked on two separate 3–4 h missions in a counterbalanced sequence: Scheduled, in which the crews were directed by Mission Control according to a strict topographic and temporal region-searching sequence, and Autonomous, in which the well-trained crews received equivalent baseline support from Mission Control but were free to explore the planetary surface as they saw fit. Under the autonomous missions, performance in all three crews improved (more high-valued geologic samples were retrieved), subjective self-reports of negative emotional states decreased, unstructured debriefing logs contained fewer references to negative emotions and greater use of socially-referent language, and salivary cortisol output across the missions was attenuated. The present study provides evidence that crew autonomy may improve performance and help sustain if not enhance psychosocial adaptation and biobehavioral health. These controlled experimental data contribute to an emerging empirical database on crew autonomy which the international astronautics community may build upon for future research and ultimately draw upon when designing and managing missions.  相似文献   

2.
The envisaged future space research programmes, whether in the field of space exploration or Earth observation are becoming more and more technically complicated and so costly that a single nation can hardly afford to realize them. Major non-European space-faring nations, China and India will progressively play an important role besides US, Russia and Japan. The Space Advisory Group of the European Commission recommended that the European Commission supports within Horizon 2020 a comprehensive Robotic Mars-Exploration Programme under European leadership that should become an essential element of a coordinated international space research programme. The International Space Station (ISS) experience shows that cooperative space programmes build links between industries and laboratories from around the world, which then further develop in non-space related activities, with positive impact on the economy and scientific research. Strategies need to be developed to mitigate the gradual increasing risks incurred by climate change. In order to lower their entry barrier to engage in space emerging and developing space nations need to be included in cooperative space programmes. We present the recommendations of the Space Advisory Group of the European Commission concerning Europe's participation to global space endeavours.  相似文献   

3.
In announcing a new Vision for the US space program, President George Bush committed the USA to “a long-term human and robotic program to explore the solar system”, via a return to the Moon, leading to exploration of Mars and other destinations. He also stated that other nations would be invited to join the vision. Many other nations have, or are developing, ‘exploration visions’ of their own. The potential for international cooperation therefore exists, both at the vision and program/project levels. This paper, based on Working Group discussions as part of an AIAA space cooperation workshop,1 presents an approach for maximizing the return on all global investments in space exploration. It proposes an international coordination mechanism through which all these various national activities could be integrated into an inherently global enterprise for space exploration, a ‘virtual program of programs’. Within the context of the coordination, individual activities would utilize the full range of cooperative mechanisms for implementation. A significant benefit of this mode of conducting cooperation is that it would not require the negotiation of complex overarching international agreements as a precondition for initiating international activity.  相似文献   

4.
Europe is present in robotic exploration though the European Space Agency?s mandatory space science program and the optional Aurora program. In addition some member states are also involved in projects of non-European space faring countries through bilateral co-operations. Europe is also present in human exploration through the ISS utilization program. ESA and some of its member states participate in the activities of the International Space Exploration Coordination Group (ISECG), a club of 14 space agencies working for the elaboration of a global exploration roadmap. Finally, ESA and the European Union have initiated a political approach with the setting up of an international forum so as to elaborate a commonly agreed vision on space exploration at political level.  相似文献   

5.
The year 2004 could be seen as the turning point for the realignment of international space cooperation for the 21st century. At the very core of this readjustment, the US space exploration initiative strives to define a new scheme for such a broad array of aspects as international scientific cooperation, the role of the space industry and the organizational framework for international space applications. This paper argues that the success of this new outline of international space cooperation depends on several conditions. First, the US initiative needs to demonstrate its long-term continuity and reliability for international partners, which will depend to no small degree on the future of the ISS and its utilization for international research. Second, international cooperation between industrial partners will continue to need political frameworks and depend on a balanced handling of know-how partnerships. Third, cooperation in space applications will need a truly international structure to further its global acceptance and outreach.  相似文献   

6.
The idea for using the International Space Station (ISS) as a platform for exploration has matured in the past few years and the concept continues to gain momentum. ISS provides a robust infrastructure which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. Systems and resources needed for expeditions can be aggregated and thoroughly tested at ISS before departure thus providing wide operational flexibility and the best assurance of mission success. A small part of ISS called an Exploration Platform (ISS-EP) can be placed in cislunar space providing immediate benefits and flexibility for future exploration missions.We will show how ISS and the ISS-EP can be used to reduce risk and improve the operational flexibility for missions beyond low Earth orbit. Life support systems and other technologies developed for ISS can be evolved and adapted to the ISS-EP and other exploration spacecrafts. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Commercial companies who are introducing transportation and other services will benefit with opportunities to contribute to the mission since ISS will serve as a focal point for the commercialization of low earth orbit services. Finally, we will show how the use of ISS provides immediate benefits to the scientific community because its capabilities are available today and certain critical aspects of exploration missions can be simulated.  相似文献   

7.
Audrey M. Schaffer   《Space Policy》2008,24(2):95-103
From 2006 to 2007 14 space agencies developed a Global Exploration Strategy outlining the rationales, goals, and timelines for space exploration. As more nations gain support for exploration programs and begin executing missions, the informal meetings of the Global Exploration Strategy ‘partners’ should be formalized through the establishment of a new international collaboration mechanism for space exploration. This paper outlines a set of desirable criteria a new collaboration mechanism should meet to encourage participation by the major space powers. The criteria were developed by synthesizing information from interviews with space agency representatives, government representatives, and space policy professionals from 10 of the Global Exploration Strategy countries. The criteria give an insight into the current requirements for international collaboration in space exploration.  相似文献   

8.
行星保护是每一个开展深空探测活动的国家都应遵守的国际化行为。基于我国深空探测任务中行星保护相关的微生物控制需求,文章首先分析了深空探测器在AIT(总装、集成和测试)阶段负载的微生物主要种类和来源,之后综述NASA和ESA采用的干热灭菌(DHMR)、气相过氧化氢(VHP)等微生物灭菌技术在行星保护任务中的应用与研究现状,最后对加快微生物灭菌技术研究以支持我国未来的行星探测任务提出建议。  相似文献   

9.
Despite the importance of space to modern life, the public has lost interest in its most human aspect, exploration. This is because spacefaring nations, and especially the USA, have clung on to outmoded cold war ways of thinking about it. The US attitude of ‘command’ over its international partners will no longer work and we must instead adopt a new, inclusive paradigm in the ‘wiki’ mould. With different countries leading different facets of a global, cooperative endeavour, and contributions reciprocated in ways valuable to all participants (e.g. through access to know-how or capacity building) there is a real possibility of advancing beyond near-Earth orbit. Keeping the ISS open for the training of future long-duration crews would be the first step in a unified human drive to the Moon, involving first a robotic village and then an international base, with Mars an ultimate goal. It the USA were to reorient its thinking towards such a project it would demonstrate true leadership.  相似文献   

10.
The current emphasis on smaller, faster, cheaper (SFC) spacecraft in NASA’s solar system exploration program is the product of a number of interacting – even interdependent – factors. The SFC concept as applied to NASA’s solar system exploration program can be viewed as the vector sum of (1) the space science community’s desire for more frequent planetary missions to plug the data gaps, educate the next generation of scientists, provide missions to targets of opportunity, and enable programmatic flexibility in times of budgetary crisis; (2) the poor publicity garnered by NASA in the early 1990s and the resultant atmosphere of public criticism (creating an opportunity for reform); (3) The Strategic Defense Initiative Organization’s and the National Space Council community’s desire to advance the Space Exploration Initiative and their perception that the NASA culture at the time represented a barrier to the effective pursuit of space exploration; (4) the effective leadership of NASA Administrator Daniel Goldin; and (5) the diminishing budget profile for space sciences in the early 1990s. This paper provides a summary of the origin of the smaller, faster, cheaper approach in the planetary program. A more through understanding of the history behind this policy will enable analysts to assess more accurately the relative successes and failures of NASA’s new approach to solar system exploration.  相似文献   

11.
Moroz  V. I.  Huntress  W. T.  Shevalev  I. L. 《Cosmic Research》2002,40(5):419-445
Among of the highlights of the 20th century were flights of spacecraft to other bodies of the Solar System. This paper describes briefly the missions attempted, their goals, and fate. Information is presented in five tables on the missions launched, their goals, mission designations, dates, discoveries when successful, and what happened if they failed. More detailed explanations are given in the accompanying text. It is shown how this enterprise developed and evolved step by step from a politically driven competition to intense scientific investigations and international cooperation. Initially, only the USA and USSR sent missions to the Moon and planets. Europe and Japan joined later. The USSR carried out significant research in Solar System exploration until the end of the 1980s. The Russian Federation no longer supports robotic planetary exploration for economic reasons, and it remains to be seen whether the invaluable Russian experience in planetary space flight will be lost. Collaboration between Russian and other national space agencies may be a solution.  相似文献   

12.
US space exploration policy deliberations tend not to include citizens who lack direct, vested financial interests in the space enterprise. Could expanding the circle of US space policy development players to involve citizens more aptly serve space exploration and the interests of American democratic society in the 21st century? I evaluate the merits and feasibility of citizen participation, drawing upon democratic theory and scholarship analyzing public participation in techno-scientific matters, previous experiences of public involvement in space exploration policy formation, and reflections on my professional experiences in space policy development. I argue that public engagement will enrich the debate surrounding the US future in space and may point toward a program American citizens will support as a meaningful future in the cosmos. I suggest three guiding principles and outline four mechanisms that, if embraced by US space policy makers, could foster meaningful public participation in informing the US space exploration agenda.  相似文献   

13.
Historically, advocates of solar system exploration have disagreed over whether program goals could be entirely satisfied by robotic missions. Scientists tend to argue that robotic exploration is most cost-effective. However, the human space program has a great deal of support in the general public, thereby enabling the scientific element of exploration to be larger than it might be as a stand-alone activity. A comprehensive strategy of exploration needs a strong robotic component complementing and supporting human missions. Robots are needed for precursor missions, for crew support on planetary surfaces, and for probing dangerous environments. Robotic field assistants can provide mobility, access to scientific sites, data acquisition, visualization of the environment, precision operations, sample acquisition and analysis, and expertise to human explorers. As long as space exploration depends on public funds, space exploration must include an appropriate mix of human and robotic activity.  相似文献   

14.
When US President George W. Bush on 14 January 2004 announced a new US “Vision for Space Exploration”, he called for international participation in “a journey, not a race”, a call received with skepticism and concern elsewhere. But, after a slow start in implementing this directive, during 2006 NASA has increased the forward momentum of action on the program and of discussions on international cooperation in exploring “the Moon, Mars, and beyond”. There are nevertheless a number of significant top-level issues that must be addressed if a cooperative approach to human space exploration is to be pursued. These include the relationship between utilization of the ISS and the lunar exploration plans, integration of potential partners’ current and future capabilities into the exploration plans, and the evolving space-related intentions of other countries.  相似文献   

15.
Why we need a space elevator   总被引:2,自引:1,他引:1  
The goals of and vision for development of a space elevator have been discussed repeatedly. However, why we should develop one has been glossed over. This paper will focus upon the major issue—why build a space elevator infrastructure? It considers why we need a space elevator, what missions it would enable and how far it would reduce costs. There is no doubt that some major missions would be enhanced or significantly enabled by a space elevator infrastructure. Global communications, energy, monitoring of the Earth, global/national security, planetary defense, and exploration beyond low-Earth orbit are a few examples. In the end, if we are serious about extending space development and avoiding limitations on the human spirit, the reason we should build a space elevator is because we must!  相似文献   

16.
Since the establishment of the United Nations Committee on the Peaceful Exploration and Uses of Outer Space (COPUOS) in 1959, many actions that affect the advancement of the space frontier have been taken, within and outside COPUOS, in the interest of the global community, but without much input from Africa. Yet a number of African countries have joined those with assets in space, albeit without the necessary infrastructure on the ground. These actions vary in scope, in importance and in participation; however, they affect us all. Examples include the legal instruments that are in operation today for the exploration and peaceful uses of outer space, sustainability of the outer space environment and the Global Exploration Strategy– Framework for Coordination (GES–FC), conceived by 14 spacefaring nations; this laid out the details needed for an active global space exploration programme. This paper reflects on existing space-related regional cooperation arrangements at the inter-governmental level, including the African Leadership Conference on Space Science and Technology for Sustainable Development (ALC). Noting that, despite UN General Assembly endorsement of the need for developing countries to have access to the International Space Station (ISS), almost all in Africa have not, it asks what Africa might gain from such an experience. The paper concludes with an examination of where and why Africa needs to focus its immediate space-related efforts – on the ground here on Earth or in outer space?  相似文献   

17.
This article discusses the outcomes of an April 2005 workshop held at ISU in Strasbourg. Experts sought to tailor an international co-ordination mechanism that would achieve the classical benefits of international co-operation for the unique venture of space exploration. The mechanism they developed provides a permanent forum for those with vested interests in exploration (currently space agencies in key spacefaring nations) to exchange information about national plans and activities so as to build confidence in one another's programs and, to the extent they choose, to develop beneficial interdependencies. The product of this co-ordination effort would be a consolidated international exploration roadmap that would both inform and reflect national program decisions. The co-ordination mechanism would simultaneously involve, but in less central roles, other important interested parties (industry, the science community, other countries without current exploration programs), whose advice is important to the development of a consolidated roadmap. Recognizing that the stakeholders in exploration will almost certainly evolve over time, the mechanism also presents the flexibility to accommodate new players (e.g. companies and countries not yet with investments in exploration) in more central roles as they become stakeholders with vested interests in exploration.  相似文献   

18.
《Space Policy》2014,30(3):149-155
The Global Exploration Roadmap reflects the collaborative effort of twelve space agencies to define a long-term human space exploration strategy which provides substantial benefits for improving the quality of life on Earth and is implementable and sustainable. Such a strategy is a necessary precondition to the government investments required to enable the challenging and rewarding missions that extend human presence into the solar system. The article introduces the international strategy and elaborates on NASA's leadership role in shaping that strategy. The publication of the roadmap, a reflection of the space landscape and multilateral agency-level dialog over the last four years, allows NASA to demonstrate its commitment to leading a long-term space exploration endeavor that delivers benefits, maintains strategic human spaceflight capabilities and expands human presence in space, with human missions to the surface of Mars as a driving goal. The road mapping process has clearly demonstrated the complementary interests of the participants and the potential benefits that can be gained through cooperation among nations to achieve a common goal. The present US human spaceflight policy is examined and it is shown that the establishment of a sustainable global space exploration strategy is fully consistent with that policy.  相似文献   

19.
JAXA has commenced technical research for contributing as a part of international partnership for the space exploration in Lunar vicinity. One of the candidates is the cargo transport mission with the combination of Cryogenic Propulsion Stage(s) (CPS) and a transfer vehicle derived from Japanese un-manned vehicle used for ISS. The CPS needs advanced technologies to keep the propellant for long mission duration and they will be useful in further missions beyond moon. This paper reports the profile of the mission, vehicle configurations, and the transport capabilities.  相似文献   

20.
Building upon the important experience acquired with the development of the International Space Station, the major spacefaring countries are working within the International Space Exploration Coordination Group (ISECG) at the definition of a coordinated framework for expanding the human presence beyond the Low Earth Orbit, the Global Exploration Roadmap (GER). The GER defines a long-range strategy for global exploration and include three major elements.
  • •Common goals of ISECG participating agencies for space exploration.
  • •Notional mission scenarios which are technically feasible and programmatically implementable. Two mission scenarios were defined in the 1st iteration of the GER: the “Asteroid Next” and the “Moon Next” mission scenarios.
  • •Identification of near-term opportunities for coordination and cooperation related to e.g. the development of technologies, the implementation of robotic missions to destination of interest for closing strategic knowledge gaps which need to be addressed prior to human missions as well as the utilization of ISS for demonstration of exploration enabling capabilities.
In 2009 two studies have been awarded by ESA to Industrial Teams led by Thales Alenia Space—Italy and by Astrium—Germany to define, analyze and assess optional European scenarios for future human spaceflight and exploration activities, and to derive the required capabilities for the investigated timeframe until the year 2033. Work on the European scenarios has been aligned with and informed by the international work on the GER.A conceptual design of different Building Block Elements, representing critical contributions to international Design Reference Missions (DRM's) included in the ISECG GER, has been performed and analyzed with respect to programmatic risks, budgets and required technologies. Key driving requirements for the analyzed Building Block elements have been derived from the international DRM's included in the GER.The interim outcomes of the human exploration scenario study will be presented, identifying opportunities for European Contributions to an international exploration undertaking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号