首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航天   2篇
  2008年   1篇
  2005年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
The year 2004 could be seen as the turning point for the realignment of international space cooperation for the 21st century. At the very core of this readjustment, the US space exploration initiative strives to define a new scheme for such a broad array of aspects as international scientific cooperation, the role of the space industry and the organizational framework for international space applications. This paper argues that the success of this new outline of international space cooperation depends on several conditions. First, the US initiative needs to demonstrate its long-term continuity and reliability for international partners, which will depend to no small degree on the future of the ISS and its utilization for international research. Second, international cooperation between industrial partners will continue to need political frameworks and depend on a balanced handling of know-how partnerships. Third, cooperation in space applications will need a truly international structure to further its global acceptance and outreach.  相似文献   
2.
The scenario of lithopanspermia describes the viable transport of microorganisms via meteorites. To test the first step of lithopanspermia, i.e., the impact ejection from a planet, systematic shock recovery experiments within a pressure range observed in martian meteorites (5-50 GPa) were performed with dry layers of microorganisms (spores of Bacillus subtilis, cells of the endolithic cyanobacterium Chroococcidiopsis, and thalli and ascocarps of the lichen Xanthoria elegans) sandwiched between gabbro discs (martian analogue rock). Actual shock pressures were determined by refractive index measurements and Raman spectroscopy, and shock temperature profiles were calculated. Pressure-effect curves were constructed for survival of B. subtilis spores and Chroococcidiopsis cells from the number of colony-forming units, and for vitality of the photobiont and mycobiont of Xanthoria elegans from confocal laser scanning microscopy after live/dead staining (FUN-I). A vital launch window for the transport of rock-colonizing microorganisms from a Mars-like planet was inferred, which encompasses shock pressures in the range of 5 to about 40 GPa for the bacterial endospores and the lichens, and a more limited shock pressure range for the cyanobacterium (from 5-10 GPa). The results support concepts of viable impact ejections from Mars-like planets and the possibility of reseeding early Earth after asteroid cataclysms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号