首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
PROBA-3 is a space mission of the European Space Agency that will test, and validate metrology and control systems for autonomous formation flying of two independent satellites. PROBA-3 will operate in a High Elliptic Orbit and when approaching the apogee at 6·104 Km, the two spacecraft will align to realize a giant externally occulted coronagraph named ASPIICS, with the telescope on one satellite and the external occulter on the other one, at inter-satellite distance of 144.3 m. The formation will be maintained over 6 hrs across the apogee transit and during this time different validation operations will be performed to confirm the effectiveness of the formation flying metrology concept, the metrology control systems and algorithms, and the spacecraft manoeuvring. The observation of the Sun’s Corona in the field of view [1.08;3.0]RSun will represent the scientific tool to confirm the formation flying alignment. In this paper, we review the mission concept and we describe the Shadow Position Sensors (SPS), one of the metrological systems designed to provide high accuracy (sub-millimetre level) absolute and relative alignment measurement of the formation flying. The metrology algorithm developed to convert the SPS measurements in lateral and longitudinal movement estimation is also described and the measurement budget summarized.  相似文献   

2.
3.
The Space Weather Explorer – KuaFu mission will provide simultaneous, long-term, and synoptic observations of the complete chain of disturbances from the solar atmosphere to the geospace. KuaFu-A (located at the L1 liberation point) includes Coronal Dynamics Imagers composed of a Lyman-α coronagraph (from 1.15 to 2.7 solar radii) and a white light coronagraph (out to 15 solar radii), in order to identify the initial sources of Coronal Mass Ejections (CMEs) and their acceleration profiles. The difficulty of observing the lower corona should not be underestimated since instrumental stray light remains a critical issue in the visible because of the low contrast of the corona with respect to the Sun. Observing the corona in the Lyman-α line is a valid alternative to white light observations. This approach takes advantage of both the intrinsic higher contrast of the corona with respect to the solar disk in this line compared to the visible, and the absence of F-corona at 121.6 nm. Furthermore, it has been convincingly shown that the coronal structures seen in Lyman-α correspond to those seen in the visible and which result from Thomson scattering of the coronal ionized gas. This is because the plasma is still collisional in the lower corona so that the hydrogen neutral atoms are coupled to the protons. A classical, all-reflecting internally-occulted Lyot coronagraph is required so as to preserve the image quality down to the inner limit of the field-of-view. A narrow band interference filter located in a collimated beam allows isolating the Lyman-α line. The visible coronagraph will adopt the approach of a single instrument having a large field-of-view extending from 2.5 to 15 solar radii. Such a design is based on refractive externally-occulted coronagraphs built for recent past missions, essentially the LASCO-C2 and C3 instruments and the SECCHI/COR 2 of the STEREO mission, which is itself a combination of the C2 and C3 instruments.  相似文献   

4.
The Swarm mission was selected as the 5th mission in ESA’s Earth Explorer Programme in 2004. This mission aims at measuring the Earth’s magnetic field with unprecedented accuracy. This will be done by a constellation of three satellites, where two will fly at lower altitude, measuring the gradient of the magnetic field, and one satellite will fly at higher altitude. The measured magnetic field is the sum of many contributions including both magnetic fields and currents in the Earth’s interior and electrical currents in Geospace. In order to separate all these sources electric field and plasma measurements will also be made to complement the primary magnetic field measurements. Together these will allow the deduction of information on a series of solid earth processes responsible for the creation of the fields measured. The completeness of the measurements on each satellite and the constellation aspect, however, implies simultaneous observations of a unique set of important electrodynamical parameters crucial for the understanding of the physical processes in Geospace, which are an important part of the objectives of the International Living With a Star Programme, ILWS. In this paper an overview of the Swarm science objectives, the mission concept, the scientific instrumentation, and the expected contribution to the ILWS programme will be summarized.  相似文献   

5.
"嫦娥4号"中继星是"嫦娥4号"探测器实现月球背面着陆与巡视的关键,目前正稳定运行在地-月L2点使命轨道上,该使命轨道为平均周期约14天的南族Halo轨道。因任务的需要,中继星本体系+Z轴需调整指向,处于正对太阳和非正对太阳两种状态。太阳光压在中继星+Z轴对日的情况下会加速卫星的角动量累积,增加卫星卸载喷气频次。基于中继星使命轨道段测控支持条件,采用重叠弧段法对两种状态下的中继星定轨精度进行分析与评估。结果表明,在中继星+Z轴非对日运行状态下,重叠弧段位置误差为1.6 km,速度误差为8 mm/s;在中继星+Z轴对日运行状态下,重叠弧段位置误差为0.6 km,速度误差为3 mm/s,这对中继星的长期运行具有重要参考价值。  相似文献   

6.
GNSS (Global Navigation Satellite System) radio occultation mission for remote sensing of the Earth’s atmosphere will be performed by GNOS (GNSS Occultation Sounder) instrument on China FengYun-3 (FY3) 02 series satellites, the first of which FY3-C will be launched in the year 2013. This paper describes the FY3 GNOS mission and presents some results of measurement simulation. The key designed specifications of GNOS are also shown. The main objective of simulation is to provide scientific support for GNOS occultation mission on the FY3-C satellites. We used EGOPS software to simulate occultation measurements according to GNOS designed parameters. We analyzed the accuracy of retrieval profiles based on two typical occultation events occurring in China South–East area among total simulated events. Comparisons between the retrieval atmospheric profiles and background profiles show that GNOS occultation has high accuracy in the troposphere and lower stratosphere. The sensitivities of refractivity to three types of instrumental error, i.e. Doppler biases, clock stability and local multipath, were analyzed. The results indicated that the Doppler biases introduced by along-ray velocity error and GNOS clock error were the primary error sources for FY3-C occultation mission.  相似文献   

7.
The HP3 instrument measures the thermal flux through the Martian crust using a penetration probe. Launched on the InSight mission in 2018, HP3 was deployed for penetration activities in the beginning of 2019. During initial operation, the instrument is vulnerable to slip, due to a combination of low system mass (3.3 kg on Earth), shocks delivered by the penetration probe’s action, and the possibility of an inclined attitude on the surface. An uncontrolled position change of the instrument on the surface can reduce the scientific output and even lead to a loss of the experiment if the probe’s supporting structure moves laterally. Naturally, the design of the feet has major impact on the total amount of slippage. A new design for the feet with a high slippage resistance capability at a low level of complexity and mass was developed for this instrument’s supporting structure. The design provides sufficient slippage resistance while fulfilling the challenging set of requirements for a Mars surface mission. The design was verified by test campaigns which emulate launch environments and operational behavior on Mars. This paper gives a detailed overview of the HP3 instrument itself, the relevant requirements, the complex different test campaigns and the final flight design.  相似文献   

8.
In this paper we present results for the global elastic parameters: Love number h2 and Shida number l2 derived from the analysis of Satellite Laser Ranging (SLR) data. SLR data for the two low satellites STELLA (H = 800 km) and STARLETTE (H = 810 km) observed during 2.5 years from January 3, 2005 until July 1, 2007 with 18 globally distributed ground stations were analyzed. The analysis was done separately for the two satellites. We do a sequential analysis and study the stability and convergence of the estimates as a function of length of the data set used.  相似文献   

9.
The large elongated orbit planned for NOZOMI around Mars, i.e. a periapsis of 150 km and an apoapsis of 15 RM (RM denotes the radius of Mars), will provide many occasions for encounters of NOZOMI with two Martian satellites, Phobos and Deimos, where NOZOMI is the former Planet-B meaning “Hope” in Japanese. We present a plan for imaging the two satellites by the Mars Imaging Camera (MIC) on board NOZOMI at such encounters during the mission lifetime of two years from October 1999. An Autonomous Tracking Mode is available for fly-by imaging of satellites. MIC scans the azimuth direction (orthogonal to the CCD line arrays) using the spacecraft spin at a rotation rate of 7.5 rpm, and has an image resolution of 80 arc second in both elevation and azimuth directions.The main science objectives of MIC, related to the two satellites, are (i) to study the size/spatial distributions of craters on both satellites, (ii) to examine the groove structure on Phobos, (iii) to image areas not yet seen areas of Deimos, and (iv) to derive its whole shape. We will, furthermore, search for the dust rings along the orbits of these two satellites in the forward scattering region of sunlight. The capability of MIC to execute these objectives are briefly summarized.  相似文献   

10.
SMESE: A SMall Explorer for Solar Eruptions   总被引:1,自引:0,他引:1  
The SMall Explorer for Solar Eruptions (SMESE) mission is a microsatellite proposed by France and China. The payload of SMESE consists of three packages: LYOT (a Lyman imager and a Lyman coronagraph), DESIR (an Infra-Red Telescope working at 35–80 and 100–250 μm), and HEBS (a High-Energy Burst Spectrometer working in X- and γ-rays).

The status of research on flares and coronal mass ejections is briefly reviewed in the context of on-going missions such as SOHO, TRACE and RHESSI. The scientific objectives and the profile of the mission are described. With a launch around 2012–2013, SMESE will provide a unique tool for detecting and understanding eruptions (flares and coronal mass ejections) close to the maximum phase of activity.  相似文献   


11.
SMESE (SMall Explorer For the study of Solar Eruptions) is a Franco-Chinese Microsatellite mission. The scientific objectives of SMESE are the study of coronal mass ejections and flares. Its payload consists of three instrument packages: LYOT, DESIR and HEBS. LYOT is com-posed of a Ly-α (121.6 nm) coronagraph, a Ly-α disk imager and a far UV disk imager. DESIR is an infrared telescope working at 35μm and 150μm. HEBS is a high energy burst spectrometer working in X-rays and γ-rays covering the 10keV to 600 MeV range. SMESE will be launched around 2011, providing a unique opportunity of detecting and understanding eruptions at the maximum activity phase of the solar cycle in a wide range of energies.  相似文献   

12.
Considering the KuaFu mission, state of the energy release of substorm and storm is simply presented and it’s improvements by KuaFu mission are investigated. The KuaFu mission will provide us an opportunity to improve our understanding of the energy release during the storm and the substorms. The two KuaFu-B satellites flying in 180° phase-lagged formation in a polar orbit will allow synoptic observations of the auroral oval, central plasma sheet, ring current and other regions. It can monitor the polar region 24/7 continuously. The advantage of the KuaFu mission is to provide the data during all phases of storm and substorm time that can be used to study the global energy release during all phases continuously. The data from auroral imager and other in-situ instruments on board KuaFu-B can be used to study the auroral dynamics and Joule heating during a storm and substorm. The data from the neutral atom imager instrument can be used to study the dynamics and the energy release in the ring current region from sudden commencement to complete storm recovery. Furthermore the data from KuaFu-A, which is around L1 point, can be used to study the interplanetary conditions along with the data from the plasma sheet to study the triggering process and energy release during a substorm. So, KuaFu mission with its continuous time monitoring facilities would enable us to make much progress towards solving the underlying problems.  相似文献   

13.
ASTROSAT     
The ASTROSAT satellite is an Indian National Space Observatory under development in India. Due for launch in 2010, ASTROSAT will carry a complement of five scientific instruments enabling simultaneous observations from the optical through to the hard X-ray energy band. This capability will enable broad-band spectroscopy and high time-resolution monitoring of both galactic and extra-galactic targets, such as X-ray binaries and AGN. One of the instruments is being built in collaboration with the Canadian Space Agency and another in collaboration with the University of Leicester. ASTROSAT also carries a scanning sky monitor to observe the variable X-ray sky. After an initial period of science verification and guaranteed time, a certain fraction of ASTROSAT observing time will also be made available to the community via a call for proposals. Here I summarise the instrument complement and principle scientific objectives of the mission.  相似文献   

14.
Small changes in semimajor axis of the orbits selected for the GNSS-R [R as Reflectometry] satellites, so-called fine orbit tuning, known from the ESA’s Gravity and steady-state Ocean Circulation Explorer mission, can dramatically increase the number of nadir and off-nadir reflecting points and, in turn, can enhance the capability of the concept of bistatic altimetry (GNSS Reflectometry) without additional costs. The application of our suggestion is feasible for a satellite which will be equipped by thrusters for the orbit keeping. During the mission lifetime several orbit tunings are feasible, just to transfer from one to another orbit. Then we can study short-periodic or longer-periodic features, according to scientific goals defined for the mission. The shortest cycles (few days), corresponding to the required revisit time (defined by ESA), may be subcycles of much longer cycles (repeat periods).  相似文献   

15.
Inner-Formation Gravity Measurement Satellite System (IFGMSS) is used to map the gravity field of Earth. The IFGMSS consists of two satellites in which one is called “inner satellite” and the other one is named as “outer satellite”. To measure the pure Earth gravity, the inner satellite is located in the cavity of the outer satellite. Because of the shield effect of the cavity, the inner satellite is affected only by the gravitational force, so it can sense Earth gravity precisely. To avoid the collision between the inner satellite and the outer satellite, it is best to perform a real-time control on the outer satellite. In orbit, the mass of the outer satellite decreases with the consumption of its propellant. The orbit angular rate of the inner satellite varies with time due to various disturbing forces. These two parameters’ uncertainties make the C–W function be not so accurate to describe the formation behavior of these two satellites. Furthermore, the thrusters also have some uncertainties due to the unmodelled dynamics. To cancel the effects caused by the above uncertainties, we have studied the robust control method based on the μ-synthesis. This μ-synthesis eliminates the conservativeness and improves the control efficiency comparing with the H method. Finally, to test the control method, we simulate an IFGMSS mission in which the satellite runs in a sun synchronous circular orbit with an altitude of 300 km. The simulation results show the effectiveness of the robust control method. The performances of the closed-loop system with the μ-controller are tested by the μ-analysis. It has found that the nominal performance, the robust stability and the robust performance are all achieved. The transient simulation results further prove the control response is fast and the accuracy of the relative position meets the demand of the gravity measurement.  相似文献   

16.
Planetary spacecraft orbital position and instrument pointing knowledge can be incomplete and/or inaccurate due to many operational factors. The degree of error has at times resulted in many hours of re-analysis by the science teams. NASA's Geometry and Graphics Software (GGS), an analysis tool being developed at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado at Boulder, provides the scientist with a standardized method to adjust the look direction knowledge based on the best fit to the science instrument data. The GGS tool locates the instrument boresight based on telemetered spacecraft knowledge and then adjusts that pointing knowledge based on the science analysis of the data obtained from the observation. This technique is similar to the C-Smithing technique (Wang, et al. 1988) which adjusts pointing knowledge based on body placement within an imaging instrument frame. The corrected geometry knowledge, in the SPICE kernel format, is then available for distribution to all mission science teams and for archiving. An example based on the Galileo Ultraviolet Spectrometer (UVS) data from the Earth 1 encounter will be presented.  相似文献   

17.
18.
TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) is the first Synthetic Aperture Radar (SAR) mission using close formation flying for bistatic SAR interferometry. The primary goal of the mission is to generate a global digital elevation model (DEM) with 2 m height precision and 10 m ground resolution from the configurable SAR interferometer with space baselines of a few hundred meters. As a key mission requirement for the interferometric SAR processing, the relative position, or baseline vector, of the two satellites must be determined with an accuracy of 1 mm (1D RMS) from GPS measurements collected by the onboard receivers. The operational baseline products for the TanDEM-X mission are routinely generated by the German Research Center for Geosciences (GFZ) and the German Space Operations Center (DLR/GSOC) using different software packages (EPOS/BSW, GHOST) and analysis strategies. For a further independent performance assessment, TanDEM-X baseline solutions are generated at the Astronomical Institute of the University of Bern (AIUB) on a best effort basis using the Bernese Software (BSW).  相似文献   

19.
For the future Japanese exploration mission of the Jupiter’s magnetosphere (JMO: Jupiter Magnetospheric Orbiter), a unique instrument named JUXTA (Jupiter X-ray Telescope Array) is being developed. It aims at the first in-situ measurement of X-ray emission associated with Jupiter and its neighborhood. Recent observations with Earth-orbiting satellites have revealed various X-ray emission from the Jupiter system. X-ray sources include Jupiter’s aurorae, disk emission, inner radiation belts, the Galilean satellites and the Io plasma torus. X-ray imaging spectroscopy can be a new probe to reveal rotationally driven activities, particle acceleration and Jupiter–satellite binary system. JUXTA is composed of an ultra-light weight X-ray telescope based on micromachining technology and a radiation-hard semiconductor pixel detector. It covers 0.3–2 keV with the energy resolution of <100 eV at 0.6 keV. Because of proximity to Jupiter (∼30 Jovian radii at periapsis), the image resolution of <5 arcmin and the on-axis effective area of >3 cm2 at 0.6 keV allow extremely high photon statistics and high resolution observations.  相似文献   

20.
We examine the systematic differences between topside electron density measurements recorded by different techniques over the low-middle latitude operating European station in Nicosia, Cyprus (geographical coordinates: 35.14oN, 33.2oE), (magnetic coordinates 31.86oN, 111.83 oE). These techniques include space-based in-situ data by Langmuir probes on board.European Space Agency (ESA) Swarm satellites, radio occultation measurements on board low Earth orbit (LEO) satellites from the COSMIC/FORMOSAT-3 mission and ground-based extrapolated topside electron density profiles from manually scaled ionograms. The measurements are also compared with International Reference Ionosphere Model (IRI-2016) topside estimations and IRI-corrected NeQuick topside formulation (method proposed by Pezzopane and Pignalberi (2019)). The comparison of Swarm and COSMIC observations with digisonde and IRI estimations verifies that in the majority of cases digisonde underestimates while IRI overestimates Swarm observations but in general, IRI provides a better topside representation than the digisonde. For COSMIC and digisonde profiles matched at the F layer peak the digisonde systematically underestimates topside COSMIC electron density values and the relative difference between COSMIC and digisonde increases with altitude (above hmF2), while IRI overestimates the topside COSMIC electron density but after a certain altitude (~150 km above hmF2) this overestimation starts to decrease with altitude. The IRI-corrected NeQuick underestimates the majority of topside COSMIC electron density profiles and relative difference is lower up to approximately 100 km (above the hmF2) and then it increases. The overall performance of IRI-corrected NeQuick improves with respect to IRI and digisonde.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号