首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
航空   1篇
航天技术   7篇
航天   2篇
  2013年   1篇
  2010年   3篇
  2008年   3篇
  2004年   1篇
  1986年   1篇
  1981年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The High-Definition television (HDTV) system onboard the Japanese lunar explorer Kaguya (SELENE) consists of a telephotographic camera and a wide-angle camera that each have 2.2 M-pixel IT-CCDs (interline transfer charge-coupled devices) and LSIs (large-scale integrated circuits) of the several-million-gates class. One minute-long motion pictures acquired by the HDTV system at 30 fps (frames per second) are recorded in a 1 GB semiconductor memory after compression, and then transmitted to a ground station. In the development of the space-going HDTV system, a commercial ground-model HDTV system was extensively modified and evaluated for its suitability to withstand the harsh environment of space through environmental tests. The HDTV acquired a total of 6.3 TB of movies and still images of the Earth and the Moon over the mission period that started on September 29, 2007, and ended on June 11, 2009. Footage of an “Earth-rise” and an “Earth-set” on the lunar horizon were captured for the first time by the HDTV system. During a lunar eclipse, images of the Earth’s “diamond ring” were acquired for the first time. The CCDs and the instruments used in the system remained in good working order throughout the mission period, despite the harsh space environment, which suggests a potential new approach to the development of instruments for use in space.  相似文献   
2.
An ultraviolet spectrometer, PHEBUS (Probing of Hermean Exosphere by Ultraviolet Spectroscopy) that is loaded onto the Mercury Planetary Orbiter in the BepiColombo mission is under development. The instrument, basically consisting of two spectrophotometers (EUV: 50–150 nm, FUV: 145–330 nm) and one scanning mirror, aims at measuring emission lines from molecules, atoms and ions present in the tenuous atmosphere of Mercury. The detectors employ microchannel plates as 2-D photon-counting devices. In order to enhance the quantum detection efficiencies, the surface of the top microchannel plates of EUV detector is covered with photocathode. This method enables us to identify weak atmospheric signatures such as neon (73.5 nm) and argon (104.8 nm), which could not be detected with conventional detector systems. This paper presents measurements of the performance characteristics of potassium bromide and esium iodide photocathodes, which have been evaluated for use in the EUV channel.  相似文献   
3.
The Mercury’s Sodium Atmosphere Spectral Imager (MSASI) on BepiColombo will address fundamental scientific questions pertaining to the Mercury’s sodium exosphere. Together, our measurements on the overall scale will provide ample new information on regolith–exosphere–magnetosphere coupling as well as new understanding of the dynamics governing the surface-bounded exosphere. We will compare the four different source mechanisms in preparation for modeling MSASI data and show the feasibility of identifying a process.  相似文献   
4.
Extreme and far ultraviolet imaging spectrometers are proposed for the low-altitude orbiter of the BepiColombo mission. The UV instrument, consisting of the two spectrometers with common electronics, aims at measuring (1) emission lines from molecules, atoms and ions present in the Mercury’s tenuous atmosphere and (2) the reflectance spectrum of Mercury’s surface. The instrument pursues a complete coverage in UV spectroscopy. The extreme UV spectrometer covers the spectral range of 30–150 nm with the field of view of 5.0°, and the spectrum from 130 to 430 nm is obtained by the far UV spectrometer. The extreme UV spectrometer employs multi-layer coating technology to enhance its sensitivity at particular emission lines. This technology enables us to identify small ionospheric signatures such as He II (30.4 nm) and Na II (37.2 nm), which could not be detected with conventional optics.  相似文献   
5.
6.
We have installed the first MAGDAS magnetometer at Fayum in Egypt. The ambient temperature in the initial sensor house varied more than ±4 °C in one day (24 h period). This variation made the magnetic data useless. To correct this problem, (1) a new sensor house was re-constructed which reduced the diurnal variation to less than ±1 °C, and (2) the “Uozumi Temperature Correction Method” was introduced. As a result, good data is now arriving in real time at a central facility in Japan.  相似文献   
7.
For the future Japanese exploration mission of the Jupiter’s magnetosphere (JMO: Jupiter Magnetospheric Orbiter), a unique instrument named JUXTA (Jupiter X-ray Telescope Array) is being developed. It aims at the first in-situ measurement of X-ray emission associated with Jupiter and its neighborhood. Recent observations with Earth-orbiting satellites have revealed various X-ray emission from the Jupiter system. X-ray sources include Jupiter’s aurorae, disk emission, inner radiation belts, the Galilean satellites and the Io plasma torus. X-ray imaging spectroscopy can be a new probe to reveal rotationally driven activities, particle acceleration and Jupiter–satellite binary system. JUXTA is composed of an ultra-light weight X-ray telescope based on micromachining technology and a radiation-hard semiconductor pixel detector. It covers 0.3–2 keV with the energy resolution of <100 eV at 0.6 keV. Because of proximity to Jupiter (∼30 Jovian radii at periapsis), the image resolution of <5 arcmin and the on-axis effective area of >3 cm2 at 0.6 keV allow extremely high photon statistics and high resolution observations.  相似文献   
8.
An Earth-orbiting small satellite “EXtreme ultraviolet spectrosCope for ExosphEric Dynamics” (EXCEED) which will be launched in 2012 is under development. The mission will carry out spectroscopic and imaging observation of EUV (Extreme Ultraviolet: 60–145 nm) emissions from tenuous plasmas around the planets (Venus, Mars, Mercury, and Jupiter). It is essential for EUV observation to put on an observing site outside the Earth’s atmosphere to avoid the absorption. It is also essential that the detection efficiency must be very high in order to catch the faint signals from those targets. In this mission, we employ cesium iodide coated microchannel plate as a 2 dimensional photon counting devise which shows 1.5–50 times higher quantum detection efficiency comparing with the bared one. We coat the surface of the grating and entrance mirror with silicon carbides by the chemical vapor deposition method in order to archive the high diffraction efficiency and reflectivity. The whole spectrometer is shielded by the 2 mm thick stainless steel to prevent the contamination caused by the high energy electrons from the inner radiation belt. In this paper, we will introduce the mission overview, its instrument, and their performance.  相似文献   
9.
Experiments on the quick-relief medical communications via the CS-2 satellite were carried out by using two types of 30/20 GHz small transportable earth stations whose antenna diameters are 1 and 2 m. As the terminal equipments, FM-SCPC systems with a one-telephone-equivalent channel were prepared for the transmission of voice, color freezed picture (9.6 kbps), supersonic echo signal and heart sound from a electrocardiograph. Signals from various medical equipments were transmitted by an FM-SCPC system from Simizu harbour (1 m station) to Tokyo transportable station (2 m), assuming that a person was injured in the ship and the ship came alongside the pier. Transmitted materials are mainly various kinds of pictures of affected parts, X-ray films and electrocardiograph with breathing sounds. It was found possible to send various medical information mentioned above via CS-2 by the 30/20 GHz simple communication systems with one-telephone-equivalent channel. Doctors suggested it would be possible to judge very well about the patients' emergency conditions and to give quick consult with inevitable treatment procedures for them. However, a few problems were found in the Hi-Fi reproduction of original colors and in the transmission of heart sounds in the very low frequency band less than 300 Hz.  相似文献   
10.
The experiments were designed to determine the contribution of the leg muscle relaxation to the sensitization of the vestibular function under weightlessness, The neuromuscular unit (NMU) discharges were continuously recorded with microelectrodes from the anti-gravitational soleus muscle and its antagonist, the tibialis anterior, of a man standing first upright on the level floor of a dry water tank, and then gradually being immersed in water till it reached his neck; while he was buoyed with an airtube placed under his armpit. In each of the successive states, the caloric nystagmus was evoked, analyzed and compared with the NMU discharge as well as with subjective symptoms associated with the nystagmus. The results indicate that the nystagmogenic activity had a significant correlation with the appearance of the active NMU in the soleus, and they also suggest that the reduction of ascending signals from the antigravity muscles might be one of the causes of atypical vestibular responses occuring in weightlessness.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号