首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Many interplanetary shock waves have a fast mode MHD wave Mach number between one and two and the ambient solar wind plasma and magnetic field are known to fluctuate. Therefore a weak, fast, MHD interplanetary shock wave propagating into a fluctuating solar wind region or into a solar wind stream will be expected to vary its strength.It is possible that an interplanetary shock wave, upon entering such a region will weaken its strength and degenerate into a fast-mode MHD wave. It is even possible that the shock may dissipate and disappear.A model for the propagation of a solar flare - or CME (Coronal Mass Ejections) - associated interplanetary shock wave is given. A physical mechanism is described to calculate the probability that a weak shock which enters a turbulent solar wind region will degenerate into a MHD wave. That is, the shock would disappear as an entropy-generate entity. This model also suggests that most interplanetary shock waves cannot propagate continuously with a smooth shock surface. It is suggested that the surface of an interplanetary shock will be highly distorted and that parts of the shock surface can degenerate into MHD waves or even disappear during its global propagation through interplanetary space. A few observations to support this model will be briefly described.Finally, this model of shock propagation also applies to corotating shocks. As corotating shocks propagate into fluctuating ambient solar wind regions, shocks may degenerate into waves or disappear.  相似文献   

2.
从属函数在地磁扰动预报研究中的初步应用   总被引:6,自引:2,他引:4  
根据1966-1982年期间有关太阳耀斑、行星际激波和地磁扰动的观测资料而建立的从属函数,对1984-1985年间的行星际闪烁观测中能证认出的耀斑-激波所引起的地磁扰动作了预报试验。结果表明:(1)磁扰开始时间预报的相对误差,δT/T≤10%的事件数为20个,占总事件数的50%,δT/T≤20%的事件占总事件数的70%以上;(2)磁扰幅度(ΣKp)大小的预报,其相对误差δΣKp/ΣKp≤30%的事件数为32个,占总事件数的80%,而δΣKp/ΣKp≥60%仅占15%.本文方法显示了一定潜力,有待从聚类分析方面进一步深入。   相似文献   

3.
It may not be doubted anymore that anomalous cosmic rays (ACRs) are produced in the heliosphere from interplanetary pick-up ions through their acceleration at the solar wind termination shock. However, there is no general agreement in the community of heliospheric researchers concerning the mechanism of injection of the pick-up ions into the shock acceleration. We discuss here three possible ways for pick-up ions to be involved into the acceleration process at the termination shock: (1) preacceleration of pick-up ions in the whole region from the Sun up to the termination shock by solar wind turbulences and interplanetary shock waves, (2) local preacceleration of pick-up ions in a vicinity of the termination shock by shock surfing, and (3) formation of high-velocity tails in pick-up ion spectra consisting of secondary pick-up ions which are produced in the supersonic solar wind due to ionization of energetic neutral atoms entering from the inner heliosheath.  相似文献   

4.
Fluctuations of cosmic rays and interplanetary magnetic field upstream of interplanetary shocks are studied using data of ground-based polar neutron monitors as well as measurements of energetic particles and solar wind plasma parameters aboard the ACE spacecraft. It is shown that coherent cosmic ray fluctuations in the energy range from 10 keV to 1 GeV are often observed at the Earth’s orbit before the arrival of interplanetary shocks. This corresponds to an increase of solar wind turbulence level by more than the order of magnitude upstream of the shock. We suggest a scenario where the cosmic ray fluctuation spectrum is modulated by fast magnetosonic waves generated by flux of low-energy cosmic rays which are reflected and/or accelerated by an interplanetary shock.  相似文献   

5.
Since the beginning of the 22nd solar cycle twenty solar proton events were observed by the regular balloon measurements of cosmic rays. Temporal changes of intensities and energy spectra of solar protons with energy 100-500 MeV were obtained. The strong influence of interplanetary shock waves on the proton flux characteristics near the Earth was observed. Possible effects of solar proton transport in the vicinity of shock fronts are discussed to explain the observational data.  相似文献   

6.
本文求解了点源爆炸波在环形磁场中传播的非自型问题。以耀斑引起的击波传播为例讨论了解的应用。从中可以看到,磁场扰动呈U形,主要发生在0.5Re—1.0Re的击波区域;行星际磁场的存在使击波到达1AU的时间延长了几个小时;击波必须具有大于磁截止能量EM1S2/4π J0R时(符号意义见内容)才有可能传播到1AU以远的地方,日冕磁场结构对耀斑击波进入行星际空间的传播有重要作用。   相似文献   

7.
Using nine years (1995–2003) of solar wind plasma and magnetic field data, solar sunspot number, and geomagnetic activity data, we investigated the geomagnetic activity associated with magnetic clouds (MCs), magnetic cloud-like structures (MCLs), and interplanetary shock waves. Eighty-two MCs and one hundred and twenty-two MCLs were identified by using solar wind and magnetic field data from the WIND mission, and two hundred and sixty-one interplanetary shocks were identified over the period of 1995–2003 in the vicinity of Earth. It is found that MCs are typically more geoeffective than MCLs or interplanetary shocks. The occurrence frequency of MCs is not well correlated with sunspot number. By contrast, both occurrence frequency of MCLs and sudden storm commencements (SSCs) are well correlated with sunspot number.  相似文献   

8.
Advances in modeling gradual solar energetic particle events   总被引:1,自引:0,他引:1  
Solar energetic particles pose one of the most serious hazards to space probes, satellites and astronauts. The most intense and largest solar energetic particle events are closely associated with fast coronal mass ejections able to drive interplanetary shock waves as they propagate through interplanetary space. The simulation of these particle events requires knowledge of how particles and shocks propagate through the interplanetary medium, and how shocks accelerate and inject particles into interplanetary space. Several models have appeared in the literature that attempt to model these energetic particle events. Each model presents its own simplifying assumptions in order to tackle the series of complex phenomena occurring during the development of such events. The accuracy of these models depends upon the approximations used to describe the physical processes involved in the events. We review the current models used to describe gradual solar energetic particle events, their advances and shortcomings, and their possible applications to space weather forecasting.  相似文献   

9.
A sequence of six well defined interplanetary structures (magnetic clouds) was identified in the solar wind and magnetic field measurements of Helios-1 from 29 June-01 July, 1980. (location 0.64–0.67 AU, C. Long. ~165°, C. Lat. ~5.8°). These structures were characterized by a large northward directed solar wind flow; by well defined directional discontinuities of mainly the ‘tangential-type’ at their beginnings and ends; by some increase in proton and by very pronounced increases in alpha particle number densities - each accompanied by sudden temperature decreases (or in one case by an increase); by some times an increase in magnetic field strength and by values of Nα/Np typical of the inner solar atmosphere. These structures are suggested to have been ejections from a succession (27–29 June, 1980) of Type II producing flares in Hale Region 16923 which coronagraph and X-ray (GOES) data indicate constituted a family of transient producing events. Only two interplanetary shocks were identified in the relevant Helios-1 records. It is suggested on the basis of observations of the directionality of certain of the flare related Type II bursts that some of these shocks could have been missed by the spacecraft. This implies that, in the absence of directional information, correlation of an observed interplanetary shock wave with a solar Type II burst may not always lead to a unique result.  相似文献   

10.
Historically, solar energetic particle (SEP) events are classified in two classes as “impulsive” and “gradual”. Whether there is a clear distinction between the two classes is still a matter of debate, but it is now commonly accepted that in large “gradual” SEP events, Fermi acceleration, also known as diffusive shock acceleration, is the underlying acceleration mechanism. At shock waves driven by coronal mass ejections (CMEs), particles are accelerated diffusively at the shock and often reach > MeV energies (and perhaps up to GeV energies). As a CME-driven shock propagates, expands and weakens, the accelerated particles can escape ahead of the shock into the interplanetary medium. These escaping energized particles then propagate along the interplanetary magnetic field, experiencing only weak scattering from fluctuations in the interplanetary magnetic field (IMF). In this paper, we use a Monte-Carlo approach to study the transport of energetic particles escaping from a CME-driven shock. We present particle spectra observed at 1 AU. We also discuss the particle “crossing number” at 1AU and its implication to particle anisotropy. Based on previous models of particle acceleration at CME-driven shocks, our simulation allows us to investigate various characteristics of energetic particles arriving at various distances from the sun. This provides us an excellent basis for understanding the observations of high-energy particles made at 1 AU by ACE and WIND.  相似文献   

11.
Features of strong interplanetary disturbances (including 14 shock waves) are considered by the solar wind plasma measurements onboard the PROGNOZ-8 satellite. Examination of large-scale structure of the plasma fluxes enabled us to discover extreme values of proton temperature (~106K) and density (~102cm?3) in some cases.The energy transferred by the interplanetary shock waves (1031–1032 erg) and their deceleration are estimated. Determination of the plasma parameter jumps for protons and α-particles at the shock front made it possible to estimate the potential barrier (40–400V) depending on magnetosonic Mach number.  相似文献   

12.
磁暴急始(SSC)是强烈太阳风动压或行星际激波与磁层相互作用的结果.通常SSC事件的上升时间在4~10 min,我们把上升时间超过15 min的SSC事件称为异常SSC事件.本文利用地磁SYM-H指数鉴别出了5个有地磁观测历史以来发生的上升时间大于15 min的异常SSC事件,并利用Wind,ACE,IMP 8,Goes,Geotail多点卫星太阳风观测数据和地磁观测数据,分析了异常SSC事件的行星际原因.结果表明,异常SSC事件通常都是强烈行星际扰动引起的,5个异常SSC事件有4个对应于行星际激波,有3个对应于多步太阳风动压跃变,有1个对应于行星际电场大幅度变化;由行星际激波产生的异常SSC事件,其上升时间依赖于行星际激波的方向,方向相对于日地连线越偏,上升时间越长;异常SSC事件上升时间与行星际磁场方向关系不明显.   相似文献   

13.
KuaFu Mission     
The KuaFu mission-Space Storms, Aurora and Space Weather Explorer-is an "L1+Polar" triple satellite project composed of three spacecraft: KuaFu-A will be located at L1 and have instruments to observe solar EUV and FUV emissions, and white-light Coronal Mass Ejections (CMEs), and to measure radio waves, the local plasma and magnetic field,and high-energy particles. KuaFuB1 and KuaFu- B2 will bein polar orbits chosen to facilitate continuous 24 hours a day observation of the north polar Aurora Oval. The KuaFu mission is designed to observe the complete chain of disturbances from the solar atmosphere to geospace, including solar flares, CMEs, interplanetary clouds, shock waves, and their geo-effects, such as magnetospheric sub-storms and magnetic storms, and auroral activities. The mission may start at the next solar maximum (launch in about 2012), and with an initial mission lifetime of two to three years. KuaFu data will be used for the scientific study of space weather phenomena, and will be used for space weather monitoring and forecast purposes. The overall mission design, instrument complement, and incorporation of recent technologies will target new fundamental science, advance our understanding of the physical processes underlying space weather, and raise the standard of end-to-end monitoring of the Sun-Earth system.  相似文献   

14.
The problem of interplanetary acceleration of low energy protons in association with shock waves is examined in the context of the specific event observed on 11 February 1979 on board the ISEE-3 spacecraft. This event has been selected for special study as it apparently was not associated with a solar flare event. The low energy proton telescope system on ISEE-3 measures the proton distribution function with good spectral, directional and temporal resolution from Ep = 35 keV. The evolution of the anisotropies and of the energy spectrum during the event are consistent with particle acceleration taking place in the vicinity of the shock wave.  相似文献   

15.
应用一维混合模拟方法数值研究了高密度等离子体团和行星际激波与准平行无碰撞激波的相互作用.结果表明,由于推平行无碰撞激波上游的大振幅低频波动的散射,除了在通过激波过渡区时稍有压缩外,等离子体团从激波的上游开始就一直是不断弥散的.行星际激波在向准平行无碰撞激波靠近的过程中,会在其上游产生大振幅的低频波动,同时行星际激波的强度不断增加,最后和准平行无碰撞激波会并成一个新的激波,在新激波前继续有大振幅的低频波动产生  相似文献   

16.
太阳耀斑行星际激波传播中的追赶效应   总被引:1,自引:1,他引:0  
本文采用二维MHD模型对具有不同间隔时间的2个耀斑先后爆发,模拟研究它们所对应的行星际激波间的追赶效应,并和单个耀斑所产生的行星际激波相比较。研究结果表明,间隔时间一天以内的2个耀斑激波在行星际空间向外传播时,激波之间有明显的相互作用发生,间隔时间的长短决定了激波传播过程中追赶效应的强弱。根据数值试验结果,追赶效应可归纳为4类,(1)强追赶效应,(2)中等追赶效应,(3)弱追赶效应,(4)无追赶效应。属于强追赶效应的2个耀斑激波传播至1AU处,产生的行星际扰动非常相似于单个耀斑激波的扰动。  相似文献   

17.
The Advanced Composition Explorer (ACE) spacecraft has measured 235 solar-based interplanetary (IP) shock waves between the years of 1998–2014. These were composed of 203 fast forward (FF), 6 slow forward (SF), 21 fast reverse (FR) and 5 slow reverse (SR) type shocks. These data can be obtained from the Interplanetary Shock Database of Harvard-Smithsonian Centre for Astrophysics. The Solar Section of American Association of Variable Star Observers (AAVSO) is an organization that counts the number of the sunspots. The effects of interplanetary shock waves on some physical parameters can be computed using a hydrodynamical model. There should be some correlations between these effects and the sunspot variations. The major objective of this paper is twofold. The first one is to search these correlations with sunspots given in the database of AAVSO. As expected, high correlations between physical parameters and sunspots have been obtained and these are presented in tables below. The second objective is to make an estimation of these parameters for the 22nd solar cycle and the years between 2015 and 2018 using an artificial neural network. Predictions have been made for these years where no shock data is present using artificial intelligence. The correlations were observed to increase further when these prediction results were included.  相似文献   

18.
The Aditya-L1 is first Indian solar mission scheduled to be placed in a halo orbit around the first Lagrangian point (L1) of Sun-Earth system in the year 2018–19. The approved scientific payloads onboard Aditya-L1 spacecraft includes a Fluxgate Digital Magnetometer (FGM) to measure the local magnetic field which is necessary to supplement the outcome of other scientific experiments onboard. The in-situ vector magnetic field data at L1 is essential for better understanding of the data provided by the particle and plasma analysis experiments, onboard Aditya-L1 mission. Also, the dynamics of Coronal Mass Ejections (CMEs) can be better understood with the help of in-situ magnetic field data at the L1 point region. This data will also serve as crucial input for the short lead-time space weather forecasting models.The proposed FGM is a dual range magnetic sensor on a 6?m long boom mounted on the Sun viewing panel deck and configured to deploy along the negative roll direction of the spacecraft. Two sets of sensors (tri-axial each) are proposed to be mounted, one at the tip of boom (6?m from the spacecraft) and other, midway (3?m from the spacecraft). The main science objective of this experiment is to measure the magnitude and nature of the interplanetary magnetic field (IMF) locally and to study the disturbed magnetic conditions and extreme solar events by detecting the CME from Sun as a transient event. The proposed secondary science objectives are to study the impact of interplanetary structures and shock solar wind interaction on geo-space environment and to detect low frequency plasma waves emanating from the solar corona at L1 point. This will provide a better understanding on how the Sun affects interplanetary space.In this paper, we shall give the main scientific objectives of the magnetic field experiment and brief technical details of the FGM onboard Aditya-1 spacecraft.  相似文献   

19.
The solar wind wave heating models require substantial amount of wave power in order to efficiently heat and accelerate solar wind. The level of fluctuations is however limited by energetic particle observations. The simplest cyclotron sweep models result in convection-dominated transport, contradicting observations. However, models incorporating wave-wave -interactions, which cause wave energy to cascade in wavenumber, allow more reasonable energetic particle transport in the interplanetary space. The mean free path of the energetic particles remains still relatively short in the corona, providing favorable conditions for coronal mass ejection (CME) related shock acceleration. We study the consequences of this scenario on the energetic particle production related to CMEs. The role of self-generated waves is also discussed.  相似文献   

20.
考虑了激波爆发源角宽度、能量、驱动时间、激波速度及其与背景太阳风之间的相互作用,利用流体力学扰动方程建立起一个激波扰动传播模型,用于研究激波从太阳传播到地球轨道附近(1 AU处)所需要的时间(渡越时间)问题.为印证扰动传播模型的适用性,利用1979-1989年间的27个激波事件,以及1997年2月到2000年1月间的68个激波事件,对激波到达地球轨道附近的渡越时间进行了预测,并将结果与STOA和ISPM预报模型结果进行了比较.实验表明,该模型在所有95个事件中,渡越时间相对误差小于10%的事件数占总事件数的25.26%;相对误差小于20%的占总事件数的50.53%;相对误差小于30%的占总事件的65.26%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号