首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
空腔在自由来流下将产生强烈的气动噪声,这种噪声会对飞机产生负面作用,需要寻求噪声控制方法抑制空腔噪声。等离子体是一门新兴的流动控制技术,可应用在噪声抑制方面。通过在空腔前缘、后缘以及底面10个不同的位置布置等离子体激励器,研究了等离子体激励对空腔噪声的影响。结果表明:等离子体激励可以降低空腔噪声,声压级最高降低约4 dB;降低了空腔离散噪声的峰值频率;在空腔前缘壁面施加等离子体激励,噪声抑制效果最好。  相似文献   

2.
多路等离子体合成射流改善翼型性能实验研究   总被引:2,自引:1,他引:1       下载免费PDF全文
苏志  李军  梁华  魏彪  陈杰 《推进技术》2018,39(9):1928-1937
等离子体合成射流(PSJ)响应快,频带宽,强度大,在飞行器增升减阻领域具有广阔应用前景。但常规等离子体合成射流只是单点激励,作用范围小,控制效果弱。为提高等离子体合成射流抑制机翼流动分离的能力,设计了一种新型多路放电电路驱动合成射流,使单个电源产生5~12路多点、高强度合成射流激励,并将其用于高升力翼型失速分离控制。研究了激励频率、电容能量、来流速度和激励位置对流动控制效果的影响以及阵列式激励的控制规律。实验结果表明:12路PSJs各路均能产生较强的冲击波和射流,能有效抑制翼型吸力面的流动分离,增加升力,推迟失速;当激励频率为150Hz使无量纲频率等于4.8时,流动控制效果最好;电容能量越大,来流速度越小,流动控制效果越好;翼型距前缘15%c处为最佳激励位置,在主翼后缘施加激励与前缘激励类似,能有效抑制主翼流动分离;在主翼前缘和后缘同时施加激励,增升效果变强,推迟失速的能力降低。流场存在延迟效应,延迟时间不小于585s。  相似文献   

3.
在圆锥-圆柱组合体模型半顶角为10°的圆锥前体尖端附近布置介质阻挡放电等离子体激励器,采用正弦波高压电源进行等离子体定常开/关激励。实验在3.0m×1.6m的直流式风洞中进行,迎角固定在45°,基于圆锥前体底面直径的实验雷诺数为5×10~4。对模型表面周向压力分布进行了测量,同时对测压截面处的空间涡流场进行了粒子图像测速。通过对截面压力分布和空间流场的PIV结果的分析,给出了侧向力、涡核中心位置、轴向涡量、涡核半径、次涡核半径、旋涡最大切向速度、环量等参数随等离子体激励的变化特性。结果表明:在等离子体激励的作用下,同侧的分离剪切层及其卷起的涡向外侧移动,同时另一侧的向着靠近模型的方向移动。同时激励器的作用使左舷侧涡心位置偏离次涡核的几何中心,且使得双侧的涡核和次涡核的尺寸增大。  相似文献   

4.
刘加伟  柳兆涛  丁仕洪  姚程 《推进技术》2020,41(5):1055-1062
基于等离子体热效应机理,在来流速度为34m/s和攻角0~12°内,对NACA0012翼型在等离子体激励下的流场特性进行数值模拟。通过研究等离子体激励的位置和数量对翼型的升阻力特性的影响,得出翼型增升减阻的最佳位置和数量。为保证计算模型的准确性,将未激励的翼型流场参数与NASA实验数据进行对比验证。结果表明:未激励翼型的流场计算参数与实验结果吻合度较高;在等离子体单激励下,最佳减阻位置位于翼型下表面的前缘,最佳增升位置位于翼型下表面的后缘,且二者受攻角的影响较大;在翼型下表面的前缘和后缘同时施加激励时,翼型的减阻比约为20%,最大增升比为52%。  相似文献   

5.
郑直  聂万胜  车学科  周思引 《推进技术》2018,39(7):1556-1561
为研究低燃空比条件下,准直流放电等离子对超燃燃烧室中乙烯燃烧流场的影响,在凹腔上游以及底部前壁面处布置电极产生等离子体,通过数值模拟方法,分析了不同等离子体激励强度下,燃烧室凹腔后缘附近压力分布、燃烧室总压损失、乙烯燃烧效率和燃烧室中水的分布情况。研究结果表明:准直流放电等离子体激励强度越高,对凹腔后缘附近压力场稳定能力越强。等离子体的存在,使得燃烧室出口总压损失微弱增加,损失最大值增加1.9%。燃烧室中乙烯燃烧效率平均提高1.77倍,随着激励强度的提高,燃烧效率呈现先增高后降低的趋势。等离子体改善了燃烧室中水的分布,凹腔内部产物分布范围更广、燃烧更加充分。  相似文献   

6.
双极性等离子体激励器圆柱绕流控制实验研究   总被引:5,自引:0,他引:5  
在低速风洞中利用多级双极性等离子体激励器控制圆柱绕流的流动分离。实验风速U∞=10m/s,基于圆柱直径的雷诺数Re=2.8×10^4,在实验中将两组三级双极性等离子体激励器布置在圆柱模型肩部,利用粒子图像测速技术测量圆柱的尾流场。实验结果表明,采用定常和非定常激励均能抑制圆柱尾迹区,等离子体激励强度是影响激励器对圆柱绕流控制能力的重要因素;非定常脉冲激励耗电少,对流动控制能力强,效率明显高于定常激励,脉冲激励频率影响等离子体激励器对流动的控制能力。在实验风速为10m/s时,脉冲激励频率与圆柱涡脱落频率一致,流动控制效果较好。  相似文献   

7.
低雷诺数下层流分离的等离子体控制   总被引:1,自引:0,他引:1  
孟宣市  杨泽人  陈琦  白鹏  胡海洋 《航空学报》2016,37(7):2112-2122
为有效控制层流分离特性,消除或减弱低雷诺数时小迎角下的升力非线性现象,改善翼型升力特性,并通过翼型的上表面转捩带与油流显示测量对等离子体激励控制机理进行阐述,对厚度为16%椭圆翼型低雷诺数下的气动特性进行了风洞试验研究。在此基础上,在上表面前缘10%弦长处布置激励器,通过压力分布测量观察等离子体激励对层流分离的影响。试验结果表明:当翼型上表面仅发生层流分离时,等离子体激励和转捩带的作用类似,可以有效延迟或者消除后缘层流分离,从而增加升力;当翼型上表面出现层流分离气泡并发生再附现象时,等离子体可以有效减小或者消除层流分离泡的范围,从而减小升力;通过控制层流分离,占空循环等离子体激励可以实现对低雷诺数小迎角下的升力的线性控制。  相似文献   

8.
牛中国  胡秋琦  梁华  刘捷  许相辉  蒋甲利 《推进技术》2019,40(12):2821-2831
为改善飞翼模型低速、大迎角气动特性,在试验段截面为4.5m×3.5m的低速生产型风洞中开展了大展弦比飞翼模型微秒脉冲等离子体流动控制的试验研究,所用的飞翼模型展长为2.4m,展弦比为5.79,试验研究采用了测力和PIV (Particle Image Velocimetry)两种试验方法。通过测力试验研究了等离子体激励位置和激励频率对飞翼模型失速特性的影响,通过PIV流动显示试验给出了等离子体对翼面流场结构的影响。试验研究表明:等离子体控制能显著改善大展弦比飞翼模型低速大迎角下的气动特性,激励位置和激励频率对流动控制效果具有较大影响;等离子体激励位置在机翼前缘驻点附近、激励频率为100Hz时控制效果最好;试验风速V=70m/s (Re=2.61×106),等离子体激励的峰峰值电压为10kV时飞翼模型的最大升力系数提高20.51%,失速迎角推迟6°。  相似文献   

9.
等离子体激励用于两段翼型增升的试验研究   总被引:1,自引:0,他引:1  
在NACA23018两段翼型上安装等离子体激励器,通过风洞测力和丝线流态试验,研究了等离子体对翼型最大升力和失速迎角的影响。研究表明,等离子体激励可以显著地增加NACA23018两段翼型的最大升力系数和失速迎角,来流风速20m/s时,最大升力系数增加52%,失速迎角增加12.4°。等离子体激励和前缘缝翼的作用类似,并且可以和后缘增升装置配合使用,在运输类飞机设计中有潜在的应用前景。  相似文献   

10.
为了获得30cm口径离子推力器20A额定发射电流空心阴极工作时小孔区的等离子体特性参数,并验证现有阴极小孔结构设计下的阴极电流发射能力,采用数值模拟及有限元分析方法研究了空心阴极小孔区的等离子体特性参数。结果显示:空心阴极小孔区的中性原子密度基本在4×10~(21)~6×10~(21)/m~3,分布较为均匀且越靠近小孔出口区域的原子密度越低;当阴极发射体温度为1800K时,采用等离子体零维扩散模型得到阴极小孔区轴向平均电子温度约为2.66e V,且靠近阴极顶小孔出口方向电子温度相对较高,从小孔区入口至出口电子温度增幅在1~2e V;通过离子连续性方程得到阴极孔区内,等离子体密度约在1×10~(21)~1.4×10~(21)/m~3,靠近出口处的等离子体密度降低较为明显;通过电子连续性方程,得到小孔区入口处的电子电流约为7.2A,而出口处的电子电流约为11.6A,与性能测试试验结果一致,电子电流增益系数约60%;离子电流密度峰值约为6.16×106A/m~2,出现在距离小孔入口约0.5mm处。通过理论分析认为,阴极孔区的腐蚀特点是靠近出口处的直径在离子腐蚀作用下不断地扩张,并在扩张到一定程度后,孔区出口处被腐蚀后的直径将不会再发生变化,理论分析腐蚀趋势与兰州空间技术物理研究所研制的LHC-5阴极小孔区寿命试验腐蚀情况基本一致。  相似文献   

11.
射频介质阻挡放电改善NACA 0015翼型气动性能的实验   总被引:1,自引:1,他引:0       下载免费PDF全文
谢理科  梁华  赵光银  魏彪  苏志  陈杰  田苗 《推进技术》2020,41(2):294-304
介质阻挡放电(DBD)均匀稳定、易于敷设,是机翼/翼型等离子体流动控制(PFC)中最常用的激励方式。射频介质阻挡放电激励频率高、放电功率大,且能在流场中产生明显的加热,应用潜力大。采用射频电源驱动DBD激励器产生等离子体,分析放电的体积力、热特性和诱导流场特性,开展了射频介质阻挡放电改善NACA 0015翼型气动性能的实验,研究了占空比、调制频率、载波频率和电源功率等参数对流动控制效果的影响规律。结果表明:射频等离子体激励的体积力效应随激励电压的增大而增加;射频等离子体激励产生的热量在诱导的流场中进行传导,加速流场;当来流速度为20m/s,Re=3.36×10~5时,在翼型前缘施加激励,使翼型临界失速迎角推迟1°,最大升力系数增大6.43%,且在过失速迎角下仍具有流动控制效果,使升力下降变缓;调制频率越大,控制效果越好;存在最佳占空比、载波频率和功率,占空比对流场控制效果的影响最显著,最佳占空比、载波频率和功率分别为20%,460kHz和50W。射频等离子体激励以体积力效应、热效应和诱导壁面射流改善失速流场,使得NACA0015翼型气动性能极大改善,流动分离得到有效控制。  相似文献   

12.
低速翼型分离流动的等离子体主动控制研究   总被引:3,自引:0,他引:3  
为了研究等离子体激励器的放电形式及其诱导气流的规律,以及翼型迎角、自由来流速度分别对翼型流动分离抑制效果的影响。在低速、低雷诺数条件下利用介质阻挡放电等离子体激励器对NACA0015翼型进行了主动流动控制研究。结果表明:介质阻挡放电的形式为丝状放电;等离子体激励器诱导气流的方向由裸露电极指向覆盖电极,由电极的布置方式决定,与接线方式无关;当来流速度为25m/s,雷诺数为2.03×10^5时,等离子体气动激励可以有效地抑制翼型吸力面的流动分离,翼型最大升力系数增大约为9.7%,翼型l临界失速迎角由17.5°增大到20.5°;翼型失速延迟的真正原因并非单纯的气流加速;等离子体激励器的作用效果随着来流速度的提高而减弱,研究非定常激励或等离子体激励器与流场之间的耦合效应,也许更加具有潜力。  相似文献   

13.
孙斌  赵杨  魏建国  方吉汉  谭畅 《推进技术》2019,40(3):707-713
高功率螺旋波等离子体源作为可变比冲磁等离子体发动机(Variable Specific Impulse Mag-netoplasma Rocket,VASIMR)的第一级,其参数直接影响发动机的性能。为提高螺旋波源的等离子体密度和工质电离率,以4kW螺旋波等离子体源为研究对象,利用射频补偿Langmuir探针诊断等离子体的离子密度和电子温度。试验结果表明,在强磁场条件下,随着功率的升高,螺旋波等离子体源内部共出现两次放电模式转换,最终进入了螺旋波放电模式。在达到螺旋波放电模式后,羽流区域的等离子体密度超过1×10~(12)cm~(-3),初步评估,放电天线区域的离子密度超过2×10~(14)cm~(-3),离子密度在放电管中心区域较高,沿径向逐渐降低。研究结果为30kW磁等离子体发动机的研制提供依据。  相似文献   

14.
等离子体激励抑制翼型失速分离的实验研究   总被引:12,自引:2,他引:10  
进行了低速、低雷诺数条件下等离子体激励抑制NACA0015翼型失速分离的实验研究,研究了等离子体激励电压、激励电极数目和激励位置对流动分离抑制效果的影响.在翼型吸力面敷设不对称电极布局的等离子体激励器.在来流速度为4.27m/s,雷诺数为4.96×104的情况下,未施加等离子体激励时,从攻角为9°起翼型吸力面发生显著的前缘流动分离;施加等离子体激励后,流动分离在攻角小于26°的情况下均能很好地重附到翼型吸力面表面.实验表明,流动分离越严重,对等离子体激励的强度要求也越高,等离子体激励的电压和电极组数也必须相应增大;给定的流动分离状态下,等离子体激励的电压和电极组数存在一个阈值;等离子体激励的最佳位置在流动分离起始点的前缘;雷诺数增大后,流动分离更难抑制.  相似文献   

15.
毫秒脉冲等离子体激励改善飞翼的气动性能实验   总被引:3,自引:0,他引:3  
在来流速度为30m/s时,进行了毫秒脉冲介质阻挡放电等离子体激励改善飞翼气动性能的风洞实验.等离子体激励器布置在飞翼前缘,峰峰值电压为9.5kV时,放电的脉冲能量在0.1mJ/cm量级.通过六分量测力天平测力研究了脉冲激励频率和占空比对升/阻力系数、升阻比和俯仰力矩系数的作用效果.结果表明:等离子体激励可以有效改善飞翼大攻角气动特性;在最佳无量纲脉冲激励频率F+≈1时,临界失速迎角由14°提高到17°,最大升力系数提高10%;占空比对流动控制效果影响较大,减小占空比可以降低能耗,实验中最佳占空比为5%;俯仰力矩系数的变化表明施加等离子体激励改善了飞翼纵向静稳定性.   相似文献   

16.
多相等离子体气动激励抑制翼型失速分离的实验   总被引:6,自引:4,他引:2  
开展了多相等离子体气动激励抑制NACA0015翼型失速分离的实验,详细研究了翼型升阻特性随激励电压、激励相角、输入电压波形和占空比等激励参数的影响.研究表明:雷诺数Re=4.9×105(来流速度60m/s)时,多相等离子体气动激励可有效抑制NACA0015翼型吸力面的流动分离,将翼型临界失速攻角提高2°;相位对流动控制...  相似文献   

17.
地面试验模拟高空等离子体流动控制效果   总被引:1,自引:0,他引:1  
提出了一种利用地面试验研究不同海拔高度等离子体流动控制性能的方法,该方法基于等离子体诱导射流雷诺相似原则,首先通过测量不同气压下静止空气中等离子体诱导射流的雷诺数,确定地面模拟等离子体激励器的结构和激励参数,然后将该激励器用于风洞试验,最后根据风洞试验结果评估等离子体在不同海拔高度处的流动控制效果。利用该方法研究了等离子体控制临近空间S1223翼型,结果表明相同工作条件下等离子体诱导射流最大速度随着海拔高度增加而增大,但射流雷诺数逐渐降低;高海拔低气压下除了切向壁面射流,等离子体在激励器上方诱导出一个高速向下的法向射流;采用雷诺相似等离子体激励器控制雷诺数为7.1×104的S1223翼型表面流动,攻角为6°~20°时升力系数增大27%~43%,表明采用等离子体流动控制技术后临近空间飞行器的升力特性可得到显著提升。  相似文献   

18.
针对旋翼动态失速导致的非定常载荷增加和失速颤振问题,开展了基于后缘小翼的翼型动态失速主动控制试验,试验雷诺数Re=7.0×105,减缩频率k=0.097。采用动态压力测试手段,重点分析了后缘小翼不同振荡相位差、幅值、平衡迎角对翼型动态失速的影响规律。结果表明,后缘小翼能以振荡周期T的1/2为时间间隔,周期交替地改变翼型的气动性能,在后缘小翼与翼型振荡相位差为0°的条件下,实现了俯仰力矩峰值降低54.9%的控制效果,同时更大的后缘小翼振荡幅值能实现更好的非定常载荷控制效果,但过大的振荡幅值有可能导致失速颤振。后缘小翼振荡平衡迎角的引入能起到调节升力系数、气动阻尼的作用。  相似文献   

19.
以小型无人机翼型研究为背景,利用基于线性稳定性理论的eN方法对对小型无人机常用的翼型CLARKY在雷诺数Re=1.0×10~5、5×10~5、1.0×10~6,迎角由-5°~20°时的气动性能进行了计算和对比分析。随着雷诺数的增大,翼型上表面的转捩位置不断向前缘移动,气流分离则由完全分离逐渐转变为层流分离泡结构,使得翼型的最大升力系数和临界迎角增大,阻力减小,最大升阻比显著增大,有利迎角逐渐减小,翼型CLARKY的气动特性逐渐得到改善。  相似文献   

20.
为满足未来微小卫星等空间应用对铷原子钟小型化、高指标的要求,成都天奥电子股份有限公司采用陶瓷填充谐振腔、6.8GHz锁相倍频、数字温控等技术,研制出了一种体积约300mL的微小卫星星载铷钟原型样机。经初步测试,常温常压下该铷钟秒稳定度优于3×10~(-12),万秒稳定度优于1×10~(-13);在真空条件下天稳定度优于5×10~(-14),天漂移率优于5×10~(-13)。同时给出了设计方法及环境试验的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号