首页 | 本学科首页   官方微博 | 高级检索  
     检索      

等离子体热效应对NACA0012翼型增升减阻的研究
引用本文:刘加伟,柳兆涛,丁仕洪,姚程.等离子体热效应对NACA0012翼型增升减阻的研究[J].推进技术,2020,41(5):1055-1062.
作者姓名:刘加伟  柳兆涛  丁仕洪  姚程
作者单位:合肥工业大学,合肥工业大学,中铁四局集团钢结构有限公司,合肥工业大学
基金项目:国家自然科学基金(51906054),中央高校基本科研业务费专项资金资助(PA2019GDPK0038)
摘    要:基于等离子体热效应机理,在来流速度为34m/s和攻角0~12°内,对NACA0012翼型在等离子体激励下的流场特性进行数值模拟。通过研究等离子体激励的位置和数量对翼型的升阻力特性的影响,得出翼型增升减阻的最佳位置和数量。为保证计算模型的准确性,将未激励的翼型流场参数与NASA实验数据进行对比验证。结果表明:未激励翼型的流场计算参数与实验结果吻合度较高;在等离子体单激励下,最佳减阻位置位于翼型下表面的前缘,最佳增升位置位于翼型下表面的后缘,且二者受攻角的影响较大;在翼型下表面的前缘和后缘同时施加激励时,翼型的减阻比约为20%,最大增升比为52%。

关 键 词:热效应  激励位置  激励数量  流场参数  增升  减阻
收稿时间:2019/8/20 0:00:00
修稿时间:2020/4/7 0:00:00

Study on Lift Enhancement and Drag Reduction of NACA0012Airfoil under Plasma Thermal Effect
LIU Jia-wei,LIU Zhao-tao,DING Shi-hong,YAO Cheng.Study on Lift Enhancement and Drag Reduction of NACA0012Airfoil under Plasma Thermal Effect[J].Journal of Propulsion Technology,2020,41(5):1055-1062.
Authors:LIU Jia-wei  LIU Zhao-tao  DING Shi-hong  YAO Cheng
Institution:Hefei University of Technology,,,Hefei University of Technology
Abstract:Based on the mechanism of plasma thermal effect, the flow field characteristics of NACA0012 airfoil under plasma excitation were numerically simulated when the incoming flow velocity was 34m/s and the angle of attack was within 0~12°. The influence of the position and number of plasma excitation on the airfoil''s lift and drag characteristics were studied to obtain the optimum position and quantity for increasing lift and reducing drag of the airfoil. To ensure the accuracy of the computational model, the unexcited airfoil flow field calucation parameters were compared with NASA experimental data for verification. The results show that: the flow field calucation parameters of the unexcited airfoil are in good agreement with the experimental results. Under single plasma excitation, the optimal drag reduction position is located at the leading edge of the airfoil''s lower surface and the optimal lift enhancement position is located at the trailing edge of the airfoil''s lower surface, and both are greatly affected by the angle of attack. When the leading edge and the trailing edge of the airfoil''s lower surface are excited simultaneously, the drag reduction ratio of airfoil is about 20% and the maximum lift increase ratio is 52%.
Keywords:Thermal effect  Excitation position  Number of excitation  Flow field parameters  Lift enhancement  Drag reduction
本文献已被 CNKI 等数据库收录!
点击此处可从《推进技术》浏览原始摘要信息
点击此处可从《推进技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号