首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
McCollom TM 《Astrobiology》2007,7(6):933-950
Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (<20-30 degrees C), while anaerobes will dominate higher-temperature environments. Overall, aerobic metabolic reactions can supply up to approximately 7 kJ of energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.  相似文献   

2.
Life is constructed from a limited toolkit: the Periodic Table. The reduction of oxygen provides the largest free energy release per electron transfer, except for the reduction of fluorine and chlorine. However, the bonding of O2 ensures that it is sufficiently stable to accumulate in a planetary atmosphere, whereas the more weakly bonded halogen gases are far too reactive ever to achieve significant abundance. Consequently, an atmosphere rich in O2 provides the largest feasible energy source. This universal uniqueness suggests that abundant O2 is necessary for the high-energy demands of complex life anywhere, i.e., for actively mobile organisms of approximately 10(-1)-10(0) m size scale with specialized, differentiated anatomy comparable to advanced metazoans. On Earth, aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism. As a result, anaerobes do not grow beyond the complexity of uniseriate filaments of cells because of prohibitively low growth efficiencies in a food chain. The biomass cumulative number density, n, at a particular mass, m, scales as n (> m) proportional to m(-1) for aquatic aerobes, and we show that for anaerobes the predicted scaling is n proportional to m (-1.5), close to a growth-limited threshold. Even with aerobic metabolism, the partial pressure of atmospheric O2 (P(O2)) must exceed approximately 10(3) Pa to allow organisms that rely on O2 diffusion to evolve to a size approximately 10(3) m x P(O2) in the range approximately 10(3)-10(4) Pa is needed to exceed the threshold of approximately 10(2) m size for complex life with circulatory physiology. In terrestrial life, O(2) also facilitates hundreds of metabolic pathways, including those that make specialized structural molecules found only in animals. The time scale to reach P(O(2)) approximately 10(4) Pa, or "oxygenation time," was long on the Earth (approximately 3.9 billion years), within almost a factor of 2 of the Sun's main sequence lifetime. Consequently, we argue that the oxygenation time is likely to be a key rate-limiting step in the evolution of complex life on other habitable planets. The oxygenation time could preclude complex life on Earth-like planets orbiting short-lived stars that end their main sequence lives before planetary oxygenation takes place. Conversely, Earth-like planets orbiting long-lived stars are potentially favorable habitats for complex life.  相似文献   

3.
The remarkable discovery of pyrite-induced hydrogen peroxide (H2O2) provides a key step in the evolution of oxygenic photosynthesis. Here we show that H2O2 can be generated rapidly via a reaction between pyrite and H2O in the absence of dissolved oxygen. The reaction proceeds in the dark, and H2O2 levels increase upon illumination with visible light. Since pyrite was stable in most photic environments prior to the rise of O2 levels, this finding represents an important mechanism for the formation of H2O2 on early Earth.  相似文献   

4.
Old arguments that free O(2) must have been available at Earth's surface prior to the origin of photosynthesis have been revived by a new study that shows that aerobic respiration can occur at dissolved oxygen concentrations much lower than had previously been thought, perhaps as low as 0.05?nM, which corresponds to a partial pressure for O(2) of about 4?×?10(-8) bar. We used numerical models to study whether such O(2) concentrations might have been provided by atmospheric photochemistry. Results show that disproportionation of H(2)O(2) near the surface might have yielded enough O(2) to satisfy this constraint. Alternatively, poleward transport of O(2) from the equatorial stratosphere into the polar night region, followed by downward transport in the polar vortex, may have brought O(2) directly to the surface. Thus, our calculations indicate that this "early respiration" hypothesis might be physically reasonable.  相似文献   

5.
In June 2003, the geochemical composition of geothermal fluids was determined at 9 sites in the Vulcano hydrothermal system, including sediment seeps, geothermal wells, and submarine vents. Compositional data were combined with standard state reaction properties to determine the overall Gibbs free energy (DeltaG(r) ) for 120 potential lithotrophic and heterotrophic reactions. Lithotrophic reactions in the H-O-N-S-C-Fe system were considered, and exergonic reactions yielded up to 120 kJ per mole of electrons transferred. The potential for heterotrophy was characterized by energy yields from the complete oxidation of 6 carboxylic acids- formic, acetic, propanoic, lactic, pyruvic, and succinic-with the following redox pairs: O(2)/H(2)O, SO(4) (2)/H(2)S, NO(3) ()/NH(4) (+), S(0)/H(2)S, and Fe(3)O(4)/Fe(2+). Heterotrophic reactions yielded 6-111 kJ/mol e(). Energy yields from both lithotrophic and heterotrophic reactions were highly dependent on the terminal electron acceptor (TEA); reactions with O(2) yielded the most energy, followed by those with NO(3) (), Fe(III), SO(4) (2), and S(0). When only reactions with complete TEA reduction were included, the exergonic lithotrophic reactions followed a similar electron tower. Spatial variability in DeltaG(r) was significant for iron redox reactions, owing largely to the wide range in Fe(2+) and H(+) concentrations. Energy yields were compared to those obtained for samples collected in June 2001. The temporal variations in geochemical composition and energy yields observed in the Vulcano hydrothermal system between 2001 and 2003 were moderate. The largest differences in DeltaG(r) over the 2 years were from iron redox reactions, due to temporal changes in the Fe(2+) and H(+) concentrations. The observed variations in fluid composition across the Vulcano hydrothermal system have the potential to influence not only microbial diversity but also the metabolic strategies of the resident microbial communities.  相似文献   

6.
Although not yet identified in the interstellar medium (ISM), N-heterocycles including nucleobases-the information subunits of DNA and RNA-are present in carbonaceous chondrites, which indicates that molecules of biological interest can be formed in non-terrestrial environments via abiotic pathways. Recent laboratory experiments and ab initio calculations have already shown that the irradiation of pyrimidine in pure H(2)O ices leads to the formation of a suite of oxidized pyrimidine derivatives, including the nucleobase uracil. In the present work, NH(3):pyrimidine and H(2)O:NH(3):pyrimidine ice mixtures with different relative proportions were irradiated with UV photons under astrophysically relevant conditions. Liquid- and gas-chromatography analysis of the resulting organic residues has led to the detection of the nucleobases uracil and cytosine, as well as other species of prebiotic interest such as urea and small amino acids. The presence of these molecules in organic residues formed under abiotic conditions supports scenarios in which extraterrestrial organics that formed in space and were subsequently delivered to telluric planets via comets and meteorites could have contributed to the inventory of molecules that triggered the first biological reactions on their surfaces.  相似文献   

7.
A steady state chemical model and computer program have been developed for a life support system and applied to trade-off studies. The model is based on human demand for food and oxygen determined from crew metabolic needs. The model includes modules for water recycle, waste treatment, CO2 removal and treatment, and food production. The computer program calculates rates of use and material balance for food. O2, the recycle of human waste and trash, H2O, N2, and food production supply. A simple non-iterative solution for the model has been developed using the steady state rate equations for the chemical reactions. The model and program have been used in system sizing and subsystem trade-off studies of a partially closed life support system.  相似文献   

8.
Formate, a simple organic acid known to support chemotrophic hyperthermophiles, is found in hot springs of varying temperature and pH. However, it is not yet known how metabolic strategies that use formate could contribute to primary productivity in hydrothermal ecosystems. In an effort to provide a quantitative framework for assessing the role of formate metabolism, concentration data for dissolved formate and many other solutes in samples from Yellowstone hot springs were used, together with data for coexisting gas compositions, to evaluate the overall Gibbs energy for many reactions involving formate oxidation or reduction. The result is the first rigorous thermodynamic assessment of reactions involving formate oxidation to bicarbonate and reduction to methane coupled with various forms of iron, nitrogen, sulfur, hydrogen, and oxygen for hydrothermal ecosystems. We conclude that there are a limited number of reactions that can yield energy through formate reduction, in contrast to numerous formate oxidation reactions that can yield abundant energy for chemosynthetic microorganisms. Because the energy yields are so high, these results challenge the notion that hydrogen is the primary energy source of chemosynthetic microbes in hydrothermal ecosystems.  相似文献   

9.
Cyanobacteria and similar organisms produced most of the oxygen found in Earth's atmosphere, which implies that early photosynthetic organisms would have lived in an atmosphere that was rich in CO2 and poor in O2. We investigated the tolerance of several cyanobacteria to very high (>20 kPa) concentrations of atmospheric CO2. Cultures of Synechococcus PCC7942, Synechocystis PCC7942, Plectonema boryanum, and Anabaena sp. were grown in liquid culture sparged with CO2-enriched air. All four strains grew when transferred from ambient CO2 to 20 kPa partial pressure of CO2 (pCO2), but none of them tolerated direct transfer to 40 kPa pCO2. Synechococcus and Anabaena survived 101 kPa (100%) pCO2 when pressure was gradually increased by 15 kPa per day, and Plectonema actively grew under these conditions. All four strains grew in an anoxic atmosphere of 5 kPa pCO2 in N2. Strains that were sensitive to high CO2 were also sensitive to low initial pH (pH 5-6). However, low pH in itself was not sufficient to prevent growth. Although mechanisms of damage and survival are still under investigation, we have shown that modern cyanobacteria can survive under Earth's primordial conditions and that cyanobacteria-like organisms could have flourished under conditions on early Mars, which probably had an atmosphere similar to early Earth's.  相似文献   

10.
Over the next 2 decades, NASA and ESA are planning a series of space-based observatories to detect and characterize extrasolar planets. This first generation of observatories will not be able to spatially resolve the terrestrial planets detected. Instead, these planets will be characterized by disk-averaged spectroscopy. To assess the detectability of planetary characteristics in disk-averaged spectra, we have developed a spatially and spectrally resolved model of the Earth. This model uses atmospheric and surface properties from existing observations and modeling studies as input, and generates spatially resolved high-resolution synthetic spectra using the Spectral Mapping Atmospheric Radiative Transfer model. Synthetic spectra were generated for a variety of conditions, including cloud coverage, illumination fraction, and viewing angle geometry, over a wavelength range extending from the ultraviolet to the farinfrared. Here we describe the model and validate it against disk-averaged visible to infrared observations of the Earth taken by the Mars Global Surveyor Thermal Emission Spectrometer, the ESA Mars Express Omega instrument, and ground-based observations of earthshine reflected from the unilluminated portion of the Moon. The comparison between the data and model indicates that several atmospheric species can be identified in disk-averaged Earth spectra, and potentially detected depending on the wavelength range and resolving power of the instrument. At visible wavelengths (0.4-0.9 microm) O3, H2O, O2, and oxygen dimer [(O2)2] are clearly apparent. In the mid-infrared (5-20 microm) CO2, O3, and H2O are present. CH4, N2O, CO2, O3, and H2O are visible in the near-infrared (1-5 microm). A comprehensive three-dimensional model of the Earth is needed to produce a good fit with the observations.  相似文献   

11.
Despite the extensive search for glycine (NH?CH?COOH) and other amino acids in molecular clouds associated with star-forming regions, only upper limits have been derived from radio observations. Nevertheless, two of glycine's precursors, formic acid and acetic acid, have been abundantly detected. Although both precursors may lead to glycine formation, the efficiency of reaction depends on their abundance and survival in the presence of a radiation field. These facts could promote some favoritism in the reaction pathways in the gas phase and solid phase (ice). Glycine and these two simplest carboxylic acids are found in many meteorites. Recently, glycine was also observed in cometary samples returned by the Stardust space probe. The goal of this work was to perform theoretical calculations for several interstellar reactions involving the simplest carboxylic acids as well as the carboxyl radical (COOH) in both gas and solid (ice) phase to understand which reactions could be the most favorable to produce glycine in interstellar regions fully illuminated by soft X-rays and UV, such as star-forming regions. The calculations were performed at four different levels for the gas phase (B3LYP/6-31G*, B3LYP/6-31++G**, MP2/6-31G*, and MP2/6-31++G**) and at MP2/6-31++G** level for the solid phase (ice). The current two-body reactions (thermochemical calculation) were combined with previous experimental data on the photodissociation of carboxylic acids to promote possible favoritism for glycine formation in the scenario involving formic and acetic acid in both gas and solid phase. Given that formic acid is destroyed more in the gas phase by soft X-rays than acetic acid is, we suggest that in the gas phase the most favorable reactions are acetic acid with NH or NH?OH. Another possible reaction involves NH?CH? and COOH, one of the most-produced radicals from the photodissociation of acetic acid. In the solid phase, we suggest that the reactions of formic acid with NH?CH or NH?CH?OH are the most favorable from the thermochemical point of view.  相似文献   

12.
We used Time Domain (1)H Nuclear Magnetic Resonance (NMR) to characterize changes in proton exchange between water and sugar enantiomers at different concentrations of H(2)(17)O (approximately 15-450 mM) and found that dissociation of the (-)-enantiomers of glucose and ribose occurs at significantly higher rates at higher concentrations of H(2)(17)O. The mechanism behind this enantioselective effect is unclear. The hypothesis we propose is that the large magnetic field (B(o) approximately 0.6T) applied during NMR measurements induces electric moments opposite in sign for the D and L-isomers. Because (17)O has a nuclear electric quadrupole moment not = 0, asymmetrically hydrated complexes may form between the B(o)-polarized enantiomers and H(2)(17)O. Either H(2)(17)O is more often hydrating the (+) than the (-)-enantiomers--and consequently pK differences between H(2)(16)O and H(2)(17)O lead to differences in proton exchange between enantiomers and water--or the orientation of H(2)(17)O relative to the B(o)-polarized enantiomers is different, in total or in part, which leads to hydrated complexes with different spatial geometries and different proton exchange properties. This effect is significant for Magneto-Chiral Stereo-Chemistry (MCSC) and astrobiology, and it may help us better understand specific instances of mass independent isotopic fractionation and aid in the development of new technologies for chiral and isotopic separation.  相似文献   

13.
Hudson RL  Moore MH 《Astrobiology》2006,6(3):483-489
In this paper we present spectra of H2O2-containing ices in the near- and mid-infrared (IR) regions. Spectral changes on warming are shown, as is a comparison of near-IR bands of H2O and H2O2-containing ices. An estimate of the A-value (absolute intensity) for the largest near- IR feature of H2O2 is given. Radiation-decay half-lives are reported for 19 K and 80 K, and are related to the surface radiation doses on Europa. The radiation data show that H2O2 destruction is slower at 80 K than 19 K, and are consistent with the claim that icy material in the outermost micrometer of Europa's surface has been heavily processed by radiation.  相似文献   

14.
While the microbial diversity of a spacecraft assembly facility at the Jet Propulsion Laboratory (Pasadena, CA) was being monitored, H2O2-resistant bacterial strains were repeatedly isolated from various surface locations. H2O2 is a possible sterilant for spacecraft hardware because it is a low-temperature process and compatible with various modern-day spacecraft materials, electronics, and components. Both conventional biochemical testing and molecular analyses identified these strains as Bacillus pumilus. This Bacillus species was found in both unclassified (entrance floors, anteroom, and air-lock) and classified (floors, cabinet tops, and air) locations. Both vegetative cells and spores of several B. pumilus isolates were exposed to 5% liquid H2O2 for 60 min. Spores of each strain exhibited higher resistance than their respective vegetative cells to liquid H2O2. Results indicate that the H2O2 resistance observed in both vegetative cells and spores is strain-specific, as certain B. pumilus strains were two to three times more resistant than a standard Bacillus subtilis dosimetry strain. An example of this trend was observed when the type strain of B. pumilus, ATCC 7061, proved sensitive, whereas several environmental strains exhibited varying degrees of resistance, to H2O2. Repeated isolation of H2O2-resistant strains of B. pumilus in a clean-room is a concern because their persistence might potentially compromise life-detection missions, which have very strict cleanliness and sterility requirements for spacecraft hardware.  相似文献   

15.
We investigate a new mechanism for producing oxidants, especially hydrogen peroxide (H2O2), on Mars. Large-scale electrostatic fields generated by charged sand and dust in the martian dust devils and storms, as well as during normal saltation, can induce chemical changes near and above the surface of Mars. The most dramatic effect is found in the production of H2O2 whose atmospheric abundance in the "vapor" phase can exceed 200 times that produced by photochemistry alone. With large electric fields, H2O2 abundance gets large enough for condensation to occur, followed by precipitation out of the atmosphere. Large quantities of H2O2 would then be adsorbed into the regolith, either as solid H2O2 "dust" or as re-evaporated vapor if the solid does not survive as it diffuses from its production region close to the surface. We suggest that this H2O2, or another superoxide processed from it in the surface, may be responsible for scavenging organic material from Mars. The presence of H2O2 in the surface could also accelerate the loss of methane from the atmosphere, thus requiring a larger source for maintaining a steady-state abundance of methane on Mars. The surface oxidants, together with storm electric fields and the harmful ultraviolet radiation that readily passes through the thin martian atmosphere, are likely to render the surface of Mars inhospitable to life as we know it.  相似文献   

16.
Prebiotic possibilities for the synthesis of interstellar ribose through a protic variant of the formose reaction under gas-phase conditions were studied in the absence of any known catalyst. The ion-molecule reaction products, diose and triose, were sought by mass spectrometry, and relevant masses were observed. Ab initio calculations were used to evaluate protic formose mechanism possibilities. A bilateral theoretical and experimental effort yielded a physical model for glycoaldehyde generation whereby a hydronium cation can mediate formaldehyde dimerization followed by covalent bond formation leading to diose and water. These results advance the possibility that ion-molecule reactions between formaldehyde (CH(2)O) and H(3)O(+) lead to formose reaction products and inform us about potential sugar formation processes in interstellar space.  相似文献   

17.
Dissolved H(2) concentrations up to the mM range and H(2) levels up to 9-58% by volume in the free gas phase are reported for groundwaters at sites in the Precambrian shields of Canada and Finland. Along with previously reported dissolved H(2) concentrations up to 7.4 mM for groundwaters from the Witwatersrand Basin, South Africa, these findings indicate that deep Precambrian Shield fracture waters contain some of the highest levels of dissolved H(2) ever reported and represent a potentially important energy-rich environment for subsurface microbial life. The delta (2)H isotope signatures of H(2) gas from Canada, Finland, and South Africa are consistent with a range of H(2)-producing water-rock reactions, depending on the geologic setting, which include both serpentinization and radiolysis. In Canada and Finland, several of the sites are in Archean greenstone belts characterized by ultramafic rocks that have under-gone serpentinization and may be ancient analogues for serpentinite-hosted gases recently reported at the Lost City Hydrothermal Field and other hydrothermal seafloor deposits. The hydrogeologically isolated nature of these fracture-controlled groundwater systems provides a mechanism whereby the products of water-rock interaction accumulate over geologic timescales, which produces correlations between high H(2) levels, abiogenic hydrocarbon signatures, and the high salinities and highly altered delta (18)O and delta (2)H values of these groundwaters. A conceptual model is presented that demonstrates how periodic opening of fractures and resultant mixing control the distribution and supply of H(2) and support a microbial community of H(2)-utilizing sulfate reducers and methanogens.  相似文献   

18.
Equilibrium adsorption isotherm data for the purine base adenine has been obtained on several prebiotically relevant minerals by frontal analysis using water as a mobile phase. Adenine is far displaced toward adsorption on pyrite (FeS2), quartz (SiO2), and pyrrhotite (FeS), but somewhat less for magnetite (Fe3O4) and forsterite (Mg2SiO4). The prebiotic prevalence of these minerals would have allowed them to act as a sink for adenine; removal from the aqueous phase would confer protection from hydrolysis as well, establishing a nonequilibrium thermodynamic framework for increased adenine synthesis. Our results provide evidence that adsorption phenomena may have been critical for the primordial genetic architecture.  相似文献   

19.
The oxidants produced by radiolysis and photolysis in the icy surface of Europa may be necessary to sustain carbon-based biochemistry in Europa's putative subsurface ocean. Because the subduction of oxidants to the ocean presents considerable thermodynamic challenges, we examine the formation of oxygen and related species in Europa's surface ice with the goal of characterizing the chemical state of the irradiated material. Relevant spectral observations of Europa and the laboratory data on the production of oxygen and related species are first summarized. Since the laboratory data are incomplete, we examine the rate equations for formation of oxygen and its chemical precursors by radiolysis and photolysis. Measurements and simple rate equations are suggested that can be used to characterize the production of oxidants in Europa's surface material and the chemical environment produced by radiolysis. Possible precursor molecules and the role of radical trapping are examined. The possibility of oxygen reactions on grain surfaces in Europa's regolith is discussed, and the earlier estimates of the supply of O(2) to the atmosphere are increased.  相似文献   

20.
Hand KP  Carlson RW  Chyba CF 《Astrobiology》2007,7(6):1006-1022
Europa is a prime target for astrobiology. The presence of a global subsurface liquid water ocean and a composition likely to contain a suite of biogenic elements make it a compelling world in the search for a second origin of life. Critical to these factors, however, may be the availability of energy for biological processes on Europa. We have examined the production and availability of oxidants and carbon-containing reductants on Europa to better understand the habitability of the subsurface ocean. Data from the Galileo Near-Infrared Mapping Spectrometer were used to constrain the surface abundance of CO(2) to 0.036% by number relative to water. Laboratory results indicate that radiolytically processed CO(2)-rich ices yield CO and H(2)CO(3); the reductants H(2)CO, CH(3)OH, and CH(4) are at most minor species. We analyzed chemical sources and sinks and concluded that the radiolytically processed surface of Europa could serve to maintain an oxidized ocean even if the surface oxidants (O(2), H(2)O(2), CO(2), SO(2), and SO(4) (2)) are delivered only once every approximately 0.5 Gyr. If delivery periods are comparable to the observed surface age (30-70 Myr), then Europa's ocean could reach O(2) concentrations comparable to those found in terrestrial surface waters, even if approximately 10(9) moles yr(1) of hydrothermally delivered reductants consume most of the oxidant flux. Such an ocean would be energetically hospitable for terrestrial marine macrofauna. The availability of reductants could be the limiting factor for biologically useful chemical energy on Europa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号