首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
航空   6篇
航天技术   7篇
航天   2篇
  2017年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1998年   2篇
  1992年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1981年   2篇
  1977年   1篇
排序方式: 共有15条查询结果,搜索用时 203 毫秒
1.
The Voyager Ultraviolet Spectrometer (UVS) is an objective grating spectrometer covering the wavelength range of 500–1700 Å with 10 Å resolution. Its primary goal is the determination of the composition and structure of the atmospheres of Jupiter, Saturn, Uranus and several of their satellites. The capability for two very different observational modes have been combined in a single instrument. Observations in the airglow mode measure radiation from the atmosphere due to resonant scattering of the solar flux or energetic particle bombardment, and the occultation mode provides measurements of the atmospheric extinction of solar or stellar radiation as the spacecraft enters the shadow zone behind the target. In addition to the primary goal of the solar system atmospheric measurements, the UVS is expected to make valuable contributions to stellar astronomy at wavelengths below 1000 Å.  相似文献   
2.
Mahaffy  P.R.  Donahue  T.M.  Atreya  S.K.  Owen  T.C.  Niemann  H.B. 《Space Science Reviews》1998,84(1-2):251-263
The Galileo Probe Mass Spectrometer measurements in the atmosphere of Jupiter give D/H = (2.6 ± 0.7) × 10-5 3He/4He = (1.66 ± 0.05) × 10-4These ratios supercede earlier results by Niemann et al. (1996) and are based on a reevaluation of the instrument response at high count rates and a more detailed study of the contributions of different species to the mass peak at 3 amu. The D/H ratio is consistent with Voyager and ground based data and recent spectroscopic and solar wind (SW) values obtained from the Infrared Spectroscopic Observatory (ISO) and Ulysses. The 3He/4He ratio is higher than that found in meteoritic gases (1.5 ± 0.3) × 10-4. The Galileo result for D/H when compared with that for hydrogen in the local interstellar medium (1.6 ± 0.12) × 10-5 implies a small decrease in D/H in this part of the universe during the past 4.55 billion years. Thus, it tends to support small values of primordial D/H - in the range of several times 10-5 rather than several times 10-4. These results are also quite consistent with no change in (D+3He)/H during the past 4.55 billion years in this part of our galaxy.  相似文献   
3.
In seeking to understand the formation of the giant planets and the origin of their atmospheres, the heavy element abundance in well-mixed atmosphere is key. However, clouds come in the way. Thus, composition and condensation are intimately intertwined with the mystery of planetary formation and atmospheric origin. Clouds also provide important clues to dynamical processes in the atmosphere. In this chapter we discuss the thermochemical processes that determine the composition, structure, and characteristics of the Jovian clouds. We also discuss the significance of clouds in the big picture of the formation of giant planets and their atmospheres. We recommend multiprobes at all four giant planets in order to break new ground.  相似文献   
4.
5.
Laboratory studies, numerical simulations, and desert field tests indicate that aeolian dust transport can generate atmospheric electricity via contact electrification or "triboelectricity." In convective structures such as dust devils and dust storms, grain stratification leads to macroscopic charge separations and gives rise to an overall electric dipole moment in the aeolian feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms. Previous numerical simulations indicate that these storm electric fields on Mars can approach the ambient breakdown field strength of approximately 25 kV/m. In terrestrial dust phenomena, potentials ranging from approximately 20 to 160 kV/m have been directly measured. The large electrostatic fields predicted in martian dust devils and storms can energize electrons in the low pressure martian atmosphere to values exceeding the electron dissociative attachment energy of both CO2 and H2O, which results in the formation of the new chemical products CO/O- and OH/H-, respectively. Using a collisional plasma physics model, we present calculations of the CO/O- and OH/H- reaction and production rates. We demonstrate that these rates vary geometrically with the ambient electric field, with substantial production of dissociative products when fields approach the breakdown value of approximately 25 kV/m. The dissociation of H2O into OH/H- provides a key ingredient for the generation of oxidants; thus electrically charged dust may significantly impact the habitability of Mars.  相似文献   
6.
The stellar occultation technique is a clean and powerful means of detecting and quantifying minor gases in the earth's atmosphere. The results obtained are totally insensitive to knowledge of the absolute flux of the star, and are not influenced by instrument calibration problems. Pioneering observations of nocturnal mesospheric ozone and thermospheric molecular oxygen by the stellar occultation technique were made in 1970 and 1971 with the Wisconsin stellar photometers on board the Orbiting Astronomical Observatory-2. A limb crossing geometry was used. The high resolution Princeton ultraviolet spectrometer aboard Copernicus was used in the summers of 1975, 1976 and 1977 to measure altitude profiles of molecular hydrogen, atomic chlorine and nitric oxide in addition to ozone and molecular oxygen. A limb grazing geometry was employed. The ozone densities show wide variation from orbit to orbit and particularly betewen the OAO-2 and Copernicus observations. A H2 density of 1×108 cm?3 at 95 km, and a NO density less than 106 cm?3 for altitudes greater than 85 km were measured.  相似文献   
7.
8.
Considering the possibility of outgassing from some localized sources on Mars, we have developed a one-dimensional photochemical model that includes methane (CH4), sulfur dioxide (SO2) and hydrogen sulfide (H2S). Halogens were considered but were found to have no significant impact on the martian atmospheric chemistry. We find that the introduction of methane into the martian atmosphere results in the formation of mainly formaldehyde (CH2O), methyl alcohol (CH3OH) and ethane (C2H6), whereas the introduction of the sulfur species produces mainly sulfur monoxide (SO) and sulfuric acid (H2SO4). Depending upon the flux of the outgassed molecules from possible hot spots, some of these species and the resulting new molecules may be detectable locally, either by remote sensing (e.g., with the Planetary Fourier Spectrometer on Mars Express) or in situ measurements.  相似文献   
9.
Several recent papers have reviewed the upper atmospheres and ionospheres of Jupiter and Saturn in the post Voyager era (see, e.g., /1/ and references therein). Therefore, this paper will review only the most salient characteristics, as far as Jupiter and Saturn are concerned. The emphasis here, however, is placed on the Uranus upper atmosphere that was probed in January, 1986, by Voyager 2 spacecraft. In particular comparative aspects of atmospheric composition, thermal structure, photochemistry and the vertical mixing are discussed.  相似文献   
10.
Galileo Probe Mass Spectrometer experiment   总被引:1,自引:0,他引:1  
The Galileo Probe Mass Spectrometer (GPMS) is a Probe instrument designed to measure the chemical and isotopic composition including vertical variations of the constituents in the atmosphere of Jupiter. The measurement will be performed by in situ sampling of the ambient atmosphere in the pressure range from approximately 150 mbar to 20 bar. In addition batch sampling will be performed for noble gas composition measurement and isotopic ratio determination and for sensitivity enhancement of non-reactive trace gases.The instrument consists of a gas sampling system which is connected to a quadrupole mass analyzer for molecular weight analysis. In addition two sample enrichment cells and one noble gas analysis cell are part of the sampling system. The mass range of the quadrupole analyzer is from 2 amu to 150 amu. The maximum dynamic range is 108. The detector threshold ranges from 10 ppmv for H2O to 1 ppbv for Kr and Xe. It is dependent on instrument background and ambient gas composition because of spectral interference. The threshold values are lowered through sample enrichment by a factor of 100 to 500 for stable hydrocarbons and by a factor of 10 for noble gases. The gas sampling system and the mass analyzer are sealed and evacuated until the measurement sequence is initiated after the Probe enters into the atmosphere of Jupiter. The instrument weighs 13.2 kg and the average power consumption is 13 W.The instrument follows a sampling sequence of 8192 steps and a sampling rate of two steps per second. The measurement period lasts appropriately 60 min through the nominal pressure and altitude range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号