首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
航空   6篇
航天技术   8篇
  2004年   2篇
  2002年   2篇
  1998年   2篇
  1992年   1篇
  1985年   3篇
  1982年   3篇
  1977年   1篇
排序方式: 共有14条查询结果,搜索用时 593 毫秒
1.
Israel  G.  Cabane  M.  Brun  J-F.  Niemann  H.  Way  S.  Riedler  W.  Steller  M.  Raulin  F.  Coscia  D. 《Space Science Reviews》2002,104(1-4):433-468
ACP's main objective is the chemical analysis of the aerosols in Titan's atmosphere. For this purpose, it will sample the aerosols during descent and prepare the collected matter (by evaporation, pyrolysis and gas products transfer) for analysis by the Huygens Gas Chromatograph Mass Spectrometer (GCMS). A sampling system is required for sampling the aerosols in the 135'32 km and 22'17 km altitude regions of Titan's atmosphere. A pump unit is used to force the gas flow through a filter. In its sampling position, the filter front face extends a few mm beyond the inlet tube. The oven is a pyrolysis furnace where a heating element can heat the filter and hence the sampled aerosols to 250 °C or 600 °C. The oven contains the filter, which has a thimble-like shape (height 28 mm). For transferring effluent gas and pyrolysis products to GCMS, the carrier gas is a labeled nitrogen 15N2, to avoid unwanted secondary reactions with Titan's atmospheric nitrogen. Aeraulic tests under cold temperature conditions were conducted by using a cold gas test system developed by ONERA. The objective of the test was to demonstrate the functional ability of the instrument during the descent of the probe and to understand its thermal behavior, that is to test the performance of all its components, pump unit and mechanisms. In order to validate ACP's scientific performance, pyrolysis tests were conducted at LISA on solid phase material synthesized from experimental simulation. The chromatogram obtained by GCMS analysis shows many organic compounds. Some GC peaks appear clearly from the total mass spectra, with specific ions well identified thanks to the very high sensitivity of the mass spectrometer. The program selected for calibrating the flight model is directly linked to the GCMS calibration plan. In order not to pollute the two flight models with products of solid samples such as tholins, we excluded any direct pyrolysis tests through the ACP oven during the first phase of the calibration. Post probe descent simulation of flight results are planned, using the much representative GCMS and ACP spare models. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
2.
Mahaffy  P.R.  Donahue  T.M.  Atreya  S.K.  Owen  T.C.  Niemann  H.B. 《Space Science Reviews》1998,84(1-2):251-263
The Galileo Probe Mass Spectrometer measurements in the atmosphere of Jupiter give D/H = (2.6 ± 0.7) × 10-5 3He/4He = (1.66 ± 0.05) × 10-4These ratios supercede earlier results by Niemann et al. (1996) and are based on a reevaluation of the instrument response at high count rates and a more detailed study of the contributions of different species to the mass peak at 3 amu. The D/H ratio is consistent with Voyager and ground based data and recent spectroscopic and solar wind (SW) values obtained from the Infrared Spectroscopic Observatory (ISO) and Ulysses. The 3He/4He ratio is higher than that found in meteoritic gases (1.5 ± 0.3) × 10-4. The Galileo result for D/H when compared with that for hydrogen in the local interstellar medium (1.6 ± 0.12) × 10-5 implies a small decrease in D/H in this part of the universe during the past 4.55 billion years. Thus, it tends to support small values of primordial D/H - in the range of several times 10-5 rather than several times 10-4. These results are also quite consistent with no change in (D+3He)/H during the past 4.55 billion years in this part of our galaxy.  相似文献   
3.
Composition and gas density measurement at all altitudes in the atmospheres of earth and other planets are made by mass spectrometers. Because of the impartiality and large dynamic range they are particularly favored for exploratory missions. Measurements of trace constituents, inert gases and height profiles, especially below clouds, are objectives where mass spectrometry is most useful. Significant advances have been made in recent years in development of light weight automated instruments. Experiments conducted in rarified atmospheres have been more successful or results were less controversial than in attempts to analyze high pressure atmospheres. Gas sampling and conditioning techniques are highly specific because of measurement environments and engineering constraints on the mission, and are usually the most critical elements in the experiment. Chemical sample enrichment and scrubbing for noble gas enhancement are additional sample conditioning techniques now employed. Dynamic range of more than 108 is achievable. Reliable measurements of complex organic or chemically active trace constituents with mixing ratios of less than 10?9 still require significant instrument development particularly where weight, power and sampling time are severely restricted. Adaptation of familiar and proven laboratory techniques for flight instruments is usually not straightforward and practical.  相似文献   
4.
The Cassini Ion and Neutral Mass Spectrometer (INMS) investigation will determine the mass composition and number densities of neutral species and low-energy ions in key regions of the Saturn system. The primary focus of the INMS investigation is on the composition and structure of Titan’s upper atmosphere and its interaction with Saturn’s magnetospheric plasma. Of particular interest is the high-altitude region, between 900 and 1000 km, where the methane and nitrogen photochemistry is initiated that leads to the creation of complex hydrocarbons and nitriles that may eventually precipitate onto the moon’s surface to form hydrocarbon–nitrile lakes or oceans. The investigation is also focused on the neutral and plasma environments of Saturn’s ring system and icy moons and on the identification of positive ions and neutral species in Saturn’s inner magnetosphere. Measurement of material sputtered from the satellites and the rings by magnetospheric charged particle and micrometeorite bombardment is expected to provide information about the formation of the giant neutral cloud of water molecules and water products that surrounds Saturn out to a distance of ∼12 planetary radii and about the genesis and evolution of the rings.The INMS instrument consists of a closed ion source and an open ion source, various focusing lenses, an electrostatic quadrupole switching lens, a radio frequency quadrupole mass analyzer, two secondary electron multiplier detectors, and the associated supporting electronics and power supply systems. The INMS will be operated in three different modes: a closed source neutral mode, for the measurement of non-reactive neutrals such as N2 and CH4; an open source neutral mode, for reactive neutrals such as atomic nitrogen; and an open source ion mode, for positive ions with energies less than 100 eV. Instrument sensitivity is greatest in the first mode, because the ram pressure of the inflowing gas can be used to enhance the density of the sampled non-reactive neutrals in the closed source antechamber. In this mode, neutral species with concentrations on the order of ≥104 cm−3 will be detected (compared with ≥105 cm−3 in the open source neutral mode). For ions the detection threshold is on the order of 10−2 cm−3 at Titan relative velocity (6 km sec−1). The INMS instrument has a mass range of 1–99 Daltons and a mass resolutionMM of 100 at 10% of the mass peak height, which will allow detection of heavier hydrocarbon species and of possible cyclic hydrocarbons such as C6H6.The INMS instrument was built by a team of engineers and scientists working at NASA’s Goddard Space Flight Center (Planetary Atmospheres Laboratory) and the University of Michigan (Space Physics Research Laboratory). INMS development and fabrication were directed by Dr. Hasso B. Niemann (Goddard Space Flight Center). The instrument is operated by a Science Team, which is also responsible for data analysis and distribution. The INMS Science Team is led by Dr. J. Hunter Waite, Jr. (University of Michigan).This revised version was published online in July 2005 with a corrected cover date.  相似文献   
5.
Observation of Mars shows signs of a past Earth-like climate, and, in that case, there is no objection to the possible development of life, in the underground or at the surface, as in the terrestrial primitive biosphere. Sample analysis at Mars (SAM) is an experiment which may be proposed for atmospheric, ground and underground in situ measurements. One of its goals is to bring direct or indirect information on the possibility for life to have developed on Mars, and to detect traces of past or present biological activity. With this aim, it focuses on the detection of organic molecules: volatile organics are extracted from the sample by simple heating, whereas refractory molecules are made analyzable (i.e. volatile), using derivatization technique or fragmentation by pyrolysis. Gaseous mixtures thus obtained are analyzed by gas chromatography associated to mass spectrometry. Beyond organics, carbonates and other salts are associated to the dense and moist atmosphere necessary to the development of life, and might have formed and accumulated in some places on Mars. They represent another target for SAM. Heating of the samples allows the analysis of structural gases of these minerals (CO2 from carbonates, etc.), enabling to identify them. We also show, in this paper, that it may be possible to discriminate between abiotic minerals, and minerals (shells, etc.) created by living organisms.  相似文献   
6.
The Bennett rf ion mass spectrometer (OIMS) on the Pioneer Venus Orbiter was particularly designed to provide variable temporal resolution for measurements of thermal ion composition and density. An Explore-Adapt mode is used to obtain priority for measurement of most prominent ion species, and in a 2/16 configuration, the two dominant ions within the available range of 16 species are selectively sampled at the highest rate of 0.2 sec/sample. The high resolution measurements are combined with independent observations from the magnetic field (OMAG), neutral mass spectrometer (ONMS), and electron temperature (OETP) experiments to investigate sharply structured troughs in the low altitude nightside ion concentrations. The results indicate a close correlation between the structure in the ion distributions and the structured configuration of the magnetic field which is draped about the planet. In the regions of the ion depletions, sharp fluctuations in electron temperature and anomalous increases in the density of neutral gases indicate that the ion depletion may be associated either with dynamic perturbation in the ion and neutral flows, and/or local joule heating. The configuration of the ion flow/magnetic field draping and consequent electric fields for these events must be analyzed in detail to understand the relationships.  相似文献   
7.
In-situ measurements of ion and neutral composition and temperature across the dayside of Venus during 1979–1980 exhibit long and short-term changes attributed to solar variations. Following solar maximum, dayside concentrations of CO+ and the neutral gas temperature are relatively smoothly modulated with a 28-day cycle reasonably matching that of the solar F10.7 and EUV fluxes. Measurements some 6–8 months earlier show less pronounced and more irregular modulation, and short-term day-to-day fluctuations in the ions and neutrals are relatively more conspicuous than in the later period. During the earlier period, the solar wind at Venu exhibits relatively large velocity enhancements, which appear to be consistent with differences in solar coronal behavior during the two periods. It is suggested that through the solar wind variations and associated changes in the draping of the interplanetary magnetic field about the dayside, fluctuating patterns of joule heating may occur, producing the observed short term ion and neutral variations. This indirect energy effect, if verified, presents a complication for quantitatively analyzing the modulation in neutral temperature and ion concentration produced by changes in direct EUV radiation.  相似文献   
8.
In-situ measurements of positive ion composition of the ionosphere of Venus are combined in an empirical model which is a key element for the Venus International Reference Atmosphere (VIRA) model. The ion data are obtained from the Pioneer Venus Orbiter Ion Mass Spectrometer (OIMS) which obtained daily measurements beginning in December 1978 and extending to July 1980 when the uncontrolled rise of satellite periapsis height precluded further measurements in the main body of the ionosphere. For this period, measurements of 12 ion species are sorted into altitude and local time bins with altitude extending from 150 to 1000 km. The model results exhibit the appreciable nightside ionosphere found at Venus, the dominance of atomic oxygen ions in the dayside upper ionosphere and the increase in prominence of atomic oxygen and deuterium ions on the nightside. Short term variations, such as the abrupt changes observed in the ionopause, cannot be represented in the model.  相似文献   
9.
Based on a simplified theoretical interpretation of the composition measurements with the ONMS and OIMS experiments on Pioneer Venus, the conclusion was drawn that the rotation rate of the thermosphere should be close (within a factor of two) to that of the lower atmosphere. A more realistic three-dimensional model of the thermosphere dynamics is now being developed, considering non-linear processes, higher order modes and collisional momentum exchange between the major species CO2, CO and O, which describes the diurnal variations in temperature and composition (Niemann et al., JGR, 1980). The computed horizontal winds are about 300 m/sec near the terminators and poles. Results are also presented from a two-dimensional (quasi-axisymmetric) spectral model which describes the four day superrotation in the lower atmosphere of Venus.  相似文献   
10.
Galileo Probe Mass Spectrometer experiment   总被引:1,自引:0,他引:1  
The Galileo Probe Mass Spectrometer (GPMS) is a Probe instrument designed to measure the chemical and isotopic composition including vertical variations of the constituents in the atmosphere of Jupiter. The measurement will be performed by in situ sampling of the ambient atmosphere in the pressure range from approximately 150 mbar to 20 bar. In addition batch sampling will be performed for noble gas composition measurement and isotopic ratio determination and for sensitivity enhancement of non-reactive trace gases.The instrument consists of a gas sampling system which is connected to a quadrupole mass analyzer for molecular weight analysis. In addition two sample enrichment cells and one noble gas analysis cell are part of the sampling system. The mass range of the quadrupole analyzer is from 2 amu to 150 amu. The maximum dynamic range is 108. The detector threshold ranges from 10 ppmv for H2O to 1 ppbv for Kr and Xe. It is dependent on instrument background and ambient gas composition because of spectral interference. The threshold values are lowered through sample enrichment by a factor of 100 to 500 for stable hydrocarbons and by a factor of 10 for noble gases. The gas sampling system and the mass analyzer are sealed and evacuated until the measurement sequence is initiated after the Probe enters into the atmosphere of Jupiter. The instrument weighs 13.2 kg and the average power consumption is 13 W.The instrument follows a sampling sequence of 8192 steps and a sampling rate of two steps per second. The measurement period lasts appropriately 60 min through the nominal pressure and altitude range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号