首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Following on from IRAS, ISO has provided a huge advancement in our knowledge of the phenomenology of the infrared (IR) emission of normal galaxies and the underlying physical processes. Highlights include the discovery of an extended cold dust emission component, present in all types of gas-rich galaxies and carrying the bulk of the dust luminosity; the definitive characterisation of the spectral energy distribution in the IR, revealing the channels through which stars power the IR light; the derivation of realistic geometries for stars and dust from ISO imaging; the discovery of cold dust associated with H I extending beyond the optical body of galaxies; the remarkable similarity of the near-IR (NIR)/mid-IR (MIR) SEDs for spiral galaxies, revealing the importance of the photo-dissociation regions in the energy budget for that wavelength range; the importance of the emission from the central regions in shaping up the intensity and the colour of the global MIR luminosity; the discovery of the “hot” NIR continuum emission component of interstellar dust; the predominance of the diffuse cold neutral medium as the origin for the main interstellar cooling line, [C II] 158 μm, in normal galaxies. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA.  相似文献   

2.
Starting with nearby galaxy clusters like Virgo and Coma, and continuing out to the furthest galaxy clusters for which ISO results have yet been published (z = 0.56), we discuss the development of knowledge of the infrared and associated physical properties of galaxy clusters from early IRAS observations, through the “ISO-era” to the present, in order to explore the status of ISO's contribution to this field. Relevant IRAS and ISO programmes are reviewed, addressing both the cluster galaxies and the still-very-limited evidence for an infrared-emitting intra-cluster medium. ISO made important advances in knowledge of both nearby and distant galaxy clusters, such as the discovery of a major cold dust component in Virgo and Coma cluster galaxies, the elaboration of the correlation between dust emission and Hubble-type, and the detection of numerous Luminous Infrared Galaxies (LIRGs) in several distant clusters. These and consequent achievements are underlined and described. We recall that, due to observing time constraints, ISO's coverage of higher-redshift galaxy clusters to the depths required to detect and study statistically significant samples of cluster galaxies over a range of morphological types could not be comprehensive and systematic, and such systematic coverage of distant clusters will be an important achievement of the Spitzer Observatory. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom) and with the participation of ISAS and NASA.  相似文献   

3.
Infrared spectroscopy and photometry with ISO covering most of the emission range of the interstellar medium has led to important progress in the understanding of the physics and chemistry of the gas, the nature and evolution of the dust grains and also the coupling between the gas and the grains. We review here the ISO results on the cool and low-excitation regions of the interstellar medium, where T gas≲ 500 K, n H∼ 100–105 cm−3 and the electron density is a few 10−4. JEL codes: D24, L60, 047 Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA.  相似文献   

4.
Observations of H2 line emission in galactic and extragalactic environments obtained with the Infrared Space Observatory (ISO) are reviewed. The diagnostic capability of H2 observations is illustrated. We discuss what one has learned about such diverse astrophysical sources as photon-dominated regions, shocks, young stellar objects, planetary nebulae and starburst galaxies from ISO observations of H2 emission. In this context, we emphasise use of measured H2 line intensities to infer important physical quantities such as the gas temperature, gas density and radiation field and we discuss the different possible excitation mechanisms of H2. We also briefly consider future prospects for observation of H2 from space and from the ground. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA.  相似文献   

5.
We review some of the most important theoretical ideas and observations for quasars and the nuclei of active galaxies, and suggest areas of future research. Emphasis is on the nature of the power source, the radiation processes, and the mechanism for formation and collimation of jets. Phenomena that produce X-rays are of particular concern. Particular topics discussed are the observed and expected time variability, the gas supply mechanisms and luminosity evolution, thermal and nonthermal radiation processes, observed and theoretical spectra, criteria for thermalization of electrons and ions, effects of electron-positron pairs on relativistic plasmas, hydrodynamic, electrodynamic and inertial methods for producing and confining jets. We conclude with a list of needed observations.Based on a lecture given at the Goddard Workshop on X-ray Astronomy (October 1981).  相似文献   

6.
The European Large Area ISO Survey (ELAIS) was the largest Open Time survey on the Infrared Space Observatory (ISO). It was designed to explore obscured galaxies and hence quantify the recent star-formation history of the Universe. The final reanalysis of the data has been completed and a band-merged catalogue with associations across many wavelengths compiled and released the data to the global astronomical community (http://astro.imperial.ac.uk/Elais/). This paper summarises some of the key results. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA.  相似文献   

7.
Bursts of massive star formation can temporarily dominate the luminosity of galaxies spanning a wide range of morphological types. This review is concerned primarily with such events in the central 1 kpc region of spiral galaxies which result from bar driven inflows of gas triggered by interactions or mergers. Most of the stellar radiant luminosity of such bursts is absorbed by dust and re-emitted in the far-infrared and is accompanied by radio and X-ray emission from supernova remnants which can also act collectively to drive galaxy scale outflows. Both evolutionary stellar models and estimates of the gas depletion times are consistent with typical burst durations of 107–8 yr. Spatially-resolved studies of nearby starburst galaxies reveal that the activity is distributed over many individual star forming complexes within rings and other structures organized by interactions between bars and the disc over a range of scales. More distant and extreme examples associated with mergers of massive spirals have luminosities > 1013 L and molecular gas masses > 1010 M implying star formation rates > 1000 M yr–1 which can only be sustained for 107 yr. In the most luminous merging systems, however, the relative importance of starburst and AGN activity and their possible evolutionary connection is still a hotly debated issue. Also controversial are suggestions that starbursts in addition to a black hole are required to account for the properties of AGNs or that starbursts alone may be sufficient under certain conditions. In a wider context, starbursts must clearly have played an important role in galaxy formation and evolution at earlier times. Recent detections of high redshift galaxies show that star formation was underway at z 4 but do not support a continuing increase of the strong evolution in the co-moving star formation density seen out to z l. Primeval starburst pre-cursors of spheroidal systems also remain elusive. The most distant candidates are radio galaxies and quasars at z = 4–5 and a possible population of objects responsible for an isotropic sub-mm wave background tentatively claimed to have been detected by the COBE satellite.  相似文献   

8.
Supernovae are considered as prime sources of dust in space. Observations of local supernovae over the past couple of decades have detected the presence of dust in supernova ejecta. The reddening of the high redshift quasars also indicate the presence of large masses of dust in early galaxies. Considering the top heavy IMF in the early galaxies, supernovae are assumed to be the major contributor to these large amounts of dust. However, the composition and morphology of dust grains formed in a supernova ejecta is yet to be understood with clarity. Moreover, the dust masses inferred from observations in mid-infrared and submillimeter wavelength regimes differ by two orders of magnitude or more. Therefore, the mechanism responsible for the synthesis of molecules and dust in such environments plays a crucial role in studying the evolution of cosmic dust in galaxies. This review summarises our current knowledge of dust formation in supernova ejecta and tries to quantify the role of supernovae as dust producers in a galaxy.  相似文献   

9.
The James Webb Space Telescope   总被引:4,自引:0,他引:4  
The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched early in the next decade into orbit around the second Earth–Sun Lagrange point. The observatory will have four instruments: a near-IR camera, a near-IR multiobject spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 < ; < 5.0 μ m, while the mid-IR instrument will do both imaging and spectroscopy from 5.0 < ; < 29 μ m.The JWST science goals are divided into four themes. The key objective of The End of the Dark Ages: First Light and Reionization theme is to identify the first luminous sources to form and to determine the ionization history of the early universe. The key objective of The Assembly of Galaxies theme is to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The key objective of The Birth of Stars and Protoplanetary Systems theme is to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The key objective of the Planetary Systems and the Origins of Life theme is to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. Within these themes and objectives, we have derived representative astronomical observations.To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft, and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The instrument package contains the four science instruments and a fine guidance sensor. The spacecraft provides pointing, orbit maintenance, and communications. The sunshield provides passive thermal control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST observing time will be allocated to the international astronomical community through annual peer-reviewed proposal opportunities.  相似文献   

10.
Accretion onto black holes powers most luminous compact sources in the Universe. Black holes are found with masses extending over an extraordinary broad dynamic range, from several to a few billion times the mass of the Sun. Depending on their position on the mass scale, they may manifest themselves as X-ray binaries or active galactic nuclei. X-ray binaries harbor stellar mass black holes—endpoints of the evolution of massive stars. They have been studied by X-ray astronomy since its inception in the early 60-ies, however, the enigma of the most luminous of them—ultra-luminous X-ray sources, still remains unsolved. Supermassive black holes, lurking at the centers of galaxies, are up to hundreds of millions times more massive and give rise to the wide variety of different phenomena collectively termed “Active Galactic Nuclei”. The most luminous of them reach the Eddington luminosity limit for a few billions solar masses object and are found at redshifts as high as z≥5–7. Accretion onto supermassive black holes in AGN and stellar- and (possibly) intermediate mass black holes in X-ray binaries and ultra-luminous X-ray sources in star-forming galaxies can explain most, if not all, of the observed brightness of the cosmic X-ray background radiation. Despite the vast difference in the mass scale, accretion in X-ray binaries and AGN is governed by the same physical laws, so a degree of quantitative analogy among them is expected. Indeed, all luminous black holes are successfully described by the standard Shakura-Sunyaev theory of accretion disks, while the output of low-luminosity accreting black holes in the form of mechanical and radiative power of the associated jets obeys to a unified scaling relation, termed as the “fundamental plane of black holes”. From that standpoint, in this review we discuss formation of radiation in X-ray binaries and AGN, emphasizing their main similarities and differences, and examine our current knowledge of the demographics of stellar mass and supermassive black holes.  相似文献   

11.
Modern hydrodynamical simulations offer nowadays a powerful means to trace the evolution of the X-ray properties of the intra-cluster medium (ICM) during the cosmological history of the hierarchical build up of galaxy clusters. In this paper we review the current status of these simulations and how their predictions fare in reproducing the most recent X-ray observations of clusters. After briefly discussing the shortcomings of the self-similar model, based on assuming that gravity only drives the evolution of the ICM, we discuss how the processes of gas cooling and non-gravitational heating are expected to bring model predictions into better agreement with observational data. We then present results from the hydrodynamical simulations, performed by different groups, and how they compare with observational data. As terms of comparison, we use X-ray scaling relations between mass, luminosity, temperature and pressure, as well as the profiles of temperature and entropy. The results of this comparison can be summarised as follows: (a) simulations, which include gas cooling, star formation and supernova feedback, are generally successful in reproducing the X-ray properties of the ICM outside the core regions; (b) simulations generally fail in reproducing the observed “cool core” structure, in that they have serious difficulties in regulating overcooling, thereby producing steep negative central temperature profiles. This discrepancy calls for the need of introducing other physical processes, such as energy feedback from active galactic nuclei, which should compensate the radiative losses of the gas with high density, low entropy and short cooling time, which is observed to reside in the innermost regions of galaxy clusters.  相似文献   

12.
Clusters of galaxies are self-gravitating systems of mass ∼1014–1015 h −1 M and size ∼1–3h −1 Mpc. Their mass budget consists of dark matter (∼80%, on average), hot diffuse intracluster plasma (≲20%) and a small fraction of stars, dust, and cold gas, mostly locked in galaxies. In most clusters, scaling relations between their properties, like mass, galaxy velocity dispersion, X-ray luminosity and temperature, testify that the cluster components are in approximate dynamical equilibrium within the cluster gravitational potential well. However, spatially inhomogeneous thermal and non-thermal emission of the intracluster medium (ICM), observed in some clusters in the X-ray and radio bands, and the kinematic and morphological segregation of galaxies are a signature of non-gravitational processes, ongoing cluster merging and interactions. Both the fraction of clusters with these features, and the correlation between the dynamical and morphological properties of irregular clusters and the surrounding large-scale structure increase with redshift. In the current bottom-up scenario for the formation of cosmic structure, where tiny fluctuations of the otherwise homogeneous primordial density field are amplified by gravity, clusters are the most massive nodes of the filamentary large-scale structure of the cosmic web and form by anisotropic and episodic accretion of mass, in agreement with most of the observational evidence. In this model of the universe dominated by cold dark matter, at the present time most baryons are expected to be in a diffuse component rather than in stars and galaxies; moreover, ∼50% of this diffuse component has temperature ∼0.01–1 keV and permeates the filamentary distribution of the dark matter. The temperature of this Warm-Hot Intergalactic Medium (WHIM) increases with the local density and its search in the outer regions of clusters and lower density regions has been the quest of much recent observational effort. Over the last thirty years, an impressive coherent picture of the formation and evolution of cosmic structures has emerged from the intense interplay between observations, theory and numerical experiments. Future efforts will continue to test whether this picture keeps being valid, needs corrections or suffers dramatic failures in its predictive power.  相似文献   

13.
We present the results obtained through the various ISO extragalactic deep surveys. Although IRAS revealed the existence of galaxies forming stars at a rate of a few tens (LIRGs) or even hundreds (ULIRGs) solar masses in the local universe, ISO not only discovered that these galaxies were already in place at redshift one, but also that they are not the extreme objects that we once believed them to be. Instead they appear to play a dominant role in shaping present-day galaxies as reflected by their role in the cosmic history of star formation and in producing the cosmic infrared background detected by the COBE satellite in the far infrared to sub-millimeter range. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA.  相似文献   

14.
Greenberg  J. Mayo  Li  Aigen 《Space Science Reviews》1999,90(1-2):149-161
The chemical composition of comet nuclei derived from current data on interstellar dust ingredients and comet dust and coma molecules are shown to be substantially consistent with each other in both refractory and volatile components. When limited by relative cosmic abundances the water in comet nuclei is constrained to be close to 30% by mass and the refractory to volatile ratio is close to 1:1. The morphological structure of comet nuclei, as deduced from comet dust infrared continuum and spectral emission properties, is described by a fluffy (porous) aggregate of tenth micron silicate core-organic refractory mantle particle on which outer mantles of predominantly H2O ices contain embedded carbonaceous and polycyclic aromatic hydrocarbon (PAH) type particles of size in the of 1 - 10nm range. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
We briefly review some questions of extragalactic astrophysics and cosmology that would most benefit from future missions outside the Earth's atmosphere in the IR and submillimeter. These include the formation and early evolution phases in galaxies and the probably related question of quasar formation; the observation of Active Galactic Nuclei embedded in thick dusty structures (torii) and its impact on the still debated unified model of AGN activity; the observability of radiation processes occurring at very highz through background measurements; the investigation of the large scale structure and velocity field in the distant universe; and studies of the interstellar medium in galaxies. Some more emphasis is given on the galaxy formation problem, because we believe that IR-mm sensitive observations will be crucial to its final solution.  相似文献   

16.
There are many processes that can transport gas from the galaxies to their environment and enrich the environment in this way with metals. These metal enrichment processes have a large influence on the evolution of both the galaxies and their environment. Various processes can contribute to the gas transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy interactions and others. We review their observational evidence, corresponding simulations, their efficiencies, and their time scales as far as they are known to date. It seems that all processes can contribute to the enrichment. There is not a single process that always dominates the enrichment, because the efficiencies of the processes vary strongly with galaxy and environmental properties.  相似文献   

17.
Large-scale structure formation, accretion and merging processes, AGN activity produce cosmological gas shocks. The shocks convert a fraction of the energy of gravitationally accelerated flows to internal energy of the gas. Being the main gas-heating agent, cosmological shocks could amplify magnetic fields and accelerate energetic particles via the multi-fluid plasma relaxation processes. We first discuss the basic properties of standard single-fluid shocks. Cosmological plasma shocks are expected to be collisionless. We then review the plasma processes responsible for the microscopic structure of collisionless shocks. A tiny fraction of the particles crossing the shock is injected into the non-thermal energetic component that could get a substantial part of the ram pressure power dissipated at the shock. The energetic particles penetrate deep into the shock upstream producing an extended shock precursor. Scaling relations for postshock ion temperature and entropy as functions of shock velocity in strong collisionless multi-fluid shocks are discussed. We show that the multi-fluid nature of collisionless shocks results in excessive gas compression, energetic particle acceleration, precursor gas heating, magnetic field amplification and non-thermal emission. Multi-fluid shocks provide a reduced gas entropy production and could also modify the observable thermodynamic scaling relations for clusters of galaxies.  相似文献   

18.
The imaging capabilities of the Exosat and Einstein satellites at soft X-ray wavelengths have begun to show that suitable Galactic X-ray sources have extended ( 10 arcmin) haloes due to scattering of soft X-rays by interstellar dust. A simple argument suggests that similar haloes, due to scattering by intergalactic dust, should exist around distant (z 1) quasars and detailed analysis confirms this conclusion. A search for such haloes around suitable X-ray quasars could provide valuable, model-independent, constraints on the amount and origin of intergalactic dust.  相似文献   

19.
Debris discs around stars were first discovered by the Infrared Astronomical Satellite (IRAS) in 1983. For the first time material orbiting another star than the Sun, but distinct from a circumstellar envelope, was observed through its far infrared emission. This major discovery motivated astronomers to investigate those discs by further analyzing the IRAS data, using ground-based telescopes for the hunting of exoplanets, developing several projects using the Infrared Space Observatory (ISO), and now exploiting the ISO Data Archive (IDA). This review presents the main ISO results, statistical as well as individual, on debris discs in orbit around pre-main-sequence and main-sequence stars. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA.  相似文献   

20.
One of the big surprises of the Infrared Space Observatory (ISO) has been discovery of crystalline silicates outside our own Solar system. It was generally assumed before that all cosmic silicates in space were of amorphous structure. Thanks to ISO we know now that crystalline silicates are ubiquitous in the Galaxy (except for the diffuse ISM) and sometimes even in very large quantities (> 50% of the small dust particles). The evolution of the crystalline silicates is still not completely clarified, but the combination of theoretical modeling and observations have already shed light on their life-cycle. The absence of crystalline silicates in the diffuse ISM provides us with information about the dust amorphization rate in the ISM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号