首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dave Anderson 《Acta Astronautica》1999,44(7-12):593-606
To sustain the rate of extravehicular activity (EVA) required to assemble and maintain the International Space Station, we must enhance our ability to plan, train for, and execute EVAs. An underlying analysis capability has been developed to ensure EVA access to all external worksites as a starting point for ground training, to generate information needed for on-orbit training, and to react quickly to develop contingency EVA plans, techniques, and procedures. This paper describes the use of computer-based EVA worksite analysis techniques for EVA worksite design. EVA worksite analysis has been used to design 80% of EVA worksites on the U.S. portion of the International Space Station. With the launch of the first U.S. element of the station, EVA worksite analysis is being developed further to support real-time analysis of unplanned EVA operations. This paper describes this development and deployment of EVA worksite analysis for International Space Station (ISS) mission support.  相似文献   

2.
舱外航天服的工效学问题及其研究方法   总被引:1,自引:0,他引:1  
周前祥 《上海航天》2005,22(3):47-51
阐述了舱外航天服在航天员出舱活动(EVA)过程中的作用、舱外航天服工效设计对保障航天员生命安全和EVA质量的意义,以及航天服设计必须考虑的各类因素。并在此基础上探讨了航天服设计研究的主要手段与方法,强调了现阶段利用虚拟人体进行舱外航天服工效学分析的可行性。  相似文献   

3.
Waligora JM  Kumar KV 《Acta Astronautica》1995,36(8-12):595-599
The work rates or energy utilization rates during EVA are major factors in sizing of life support systems. These rates also provide a measure of ease of EVA and its cost in crew fatigue. From the first Shuttle EVA on the STS-6 mission in 1983, we have conducted 59 man-EVA and 341 man-hours of EVA. Energy utilization rates have been measured on each of these EVA. Metabolic rate was measured during each EVA using oxygen utilization corrected for suit leakage. From 1981–1987, these data were available for average data over the EVA or over large segments of the EVA. Since 1987, EVA oxygen utilization data were available at 2-minute intervals. The average metabolic rate on Shuttle EVA (194 kcal/hr.) has been significantly lower than metabolic rates during Apollo and Skylab missions. Peak rates have been below design levels, infrequent, and of short duration. The data suggest that the energy cost of tasks may be inversely related to the degree of training for the task. The data provide insight on the safety margins provided by life support designs and on the energy cost of Station construction EVA.  相似文献   

4.
The current status of European EVA (extravehicular activity) plans is reviewed. The major difference to already existing EVA scenarios in U.S.A. and Soviet Union consists in the adoption of a higher suit pressure, namely 500 hPa. The results of a study concerned with the physiological consequences of this adoption are presented, including recommendations for protective procedures and their necessary experimental validation. A certain discrepancy between laboratory experimental decompression data and EVA operational results is discussed, leading to the identification of several items which may influence space decompression. Microgravity and the influence of the space suit itself are most likely factors in the explanation of this discrepancy, and both experimental procedures and technological developments are proposed to clarify their role for the future design of EVA procedures.  相似文献   

5.
For the European manned space activities an EVA space suit system was being developed in the frame of the Hermes Space Vehicle Programme of the European Space Agency (ESA). The space suit was to serve the needs for all relevant extravehicular activities for the Hermes Columbus operations planned to begin in 2004. For the present Russian manned space programme the relevant EVAs are performed by the Orlan-DMA semi-rigid space suit. The origin of its development reaches back to the 1970s and has since been adapted to cover the needs for extravehicular activities on Salyut and MIR until today. The latest modification of the space suit, which guaranteed its completely self-contained operation, was made in 1988. However, Russian specialists considered it necessary to start developing an EVA space suit of a new generation, which would have improved performance and would cover the needs by the turn of the century and into the beginning of the next century. Potentially these two suit developments could have a lot in common based on similarities in present concepts. As future manned space activities become more and more an international effort, a safe and reliable interoperability of the different space suit systems is required. Based on the results of the Munich Minister Conference in 1991, the European Space Agency and the Russian Space Agency agreed to initiate a requirements analysis and conceptual design study to determine the feasibility of a joint space suit development, EVA 2000. The design philosophy for the EVA 2000 study was oriented on a space suit system design of: space suit commonality and interoperability; increased crew productivity and safety; increase in useful life and reduced maintainability; reduced development and production cost. The EVA 2000 feasibility study was performed in 1992, and with the positive conclusions for EVA 2000, this approach became the new joint European Russian EVA Suit 2000 Development Programme. This paper gives an overview of the results of the feasibility study and presents the joint requirements and the proposed design concept of a jointly developed European Russian space suit.  相似文献   

6.
A feasibility study in 1992 showed the benefits of a common European Russian space suit development, EVA Suit 2000, replacing the Russian space suit Orlan-DMA and the planned European Hermes EVA space suit at the turn of the century. This EVA Suit 2000 is a joint development initiated by the European Space Agency (ESA) and the Russian Space Agency (RKA). The main objectives of this development program are: first utilization aboard the Russian Space Station MIR-2; performance improvement with respect to current operational suits; development cost reduction. Russian experience gained with the present extravehicular activity (EVA) suit on the MIR Space Station and extensive application of European Technologies will be needed to achieve these ambitious goals. This paper presents the current status of the development activities, the space suit system design and concentrates in more detail on life support aspects. Specific subjects addressed will include the overall life support conceptual architecture, design features, crew comfort and operational considerations.  相似文献   

7.
航天员在月面驻留与活动离不开登月航天服的保护。文章考虑载人登月任务环境对登月航天服的各种特殊要求后,从满足环境适应性的服装工艺设计角度对登月航天服进行了总体概念设计:应用基于模型的系统工程(MBSE)方法,利用SysML搭建登月航天服模型,采取舱内/月面兼用设计模式;主要对其头盔、躯干主体部分、手套、靴子、生命保障背包,以及安全性可靠性等方面分别开展设计与说明。该设计思路和方案可为我国载人登月以及载人深空探测航天服设计提供参考。  相似文献   

8.
表面带电对航天员出舱活动的影响及对策分析   总被引:1,自引:1,他引:0  
根据我国某载人航天器在轨飞行时的空间环境和航天器表面带电的机理,对航天器表面带电进行了仿真,并对结构切割地磁场的感应电势进行计算。在此基础上,分析了表面带电对航天员出舱的影响,以及出舱安全性防护措施,计算出主动电位控制系统最大发射电流。研究结果可为航天员出舱安全防护提供参考。  相似文献   

9.
Extravehicular activity training and hardware design consideration   总被引:3,自引:0,他引:3  
Preparing astronauts to perform the many complex extravehicular activity (EVA) tasks required to assemble and maintain Space Station will be accomplished through training simulations in a variety of facilities. The adequacy of this training is dependent on a thorough understanding of the task to be performed, the environment in which the task will be performed, high-fidelity training hardware and an awareness of the limitations of each particular training facility. Designing hardware that can be successfully operated, or assembled, by EVA astronauts in an efficient manner, requires an acute understanding of human factors and the capabilities and limitations of the space-suited astronaut. Additionally, the significant effect the microgravity environment has on the crew members' capabilities has to be carefully considered not only for each particular task, but also for all the overhead related to the task and the general overhead associated with EVA. This paper will describe various training methods and facilities that will be used to train EVA astronauts for Space Station assembly and maintenance. User-friendly EVA hardware design considerations and recent EVA flight experience will also be presented.  相似文献   

10.
Analysis of the extravehicular activity (EVA) sortie experience gained in the former Soviet Union and physiologic hygienic aspect of space suit design and development shows that crewmember productivity is related to the following main factors: -space suit microclimate (gas composition, pressure and temperature); -limitation of motion activity and perception, imposed by the space suit; -good crewmember training in the ground training program; -level of crewmember general physical performance capabilities in connection with mission duration and intervals between sorties; -individual EVA experience (with accumulation) at which workmanship improves, while metabolism, physical and emotional stress decreases; -concrete EVA duration and work rate; -EVA bioengineering, including selection of tools, work station, EVA technology and mechanization.  相似文献   

11.
Current projects of manned missions to Mars are aimed to their realization in the second-third decades of this century. The purpose of this paper is to determine and review the main biomedical problems, that require a first and foremost decision for safety support of extravehicular activity (EVA) carried out by crewmembers of the Mars expedition. To a number of such problems the authors of the paper attribute a creation of adequate EVA equipment intended, first, for assembly of interplanetary spacecraft on the Earth orbit, performance of maintenance operations and scientific researches on the external surface of spacecraft during interplanetary flight and, secondly, for work on the Mars surface. New generation of space suits with low weight, high mobility and acceptable risk of decompression sickness must be as a central component of EVA equipment. The program for preparation to a Mars expedition also has to include special investigations in order to design the means and methods for a reliable protection of crew against space radiation, to elaborate the approach to medical monitoring and primary medical care during autonomous space mission, to maintain good health condition of crewmembers during EVA under the Mars gravity (0.38 g) after super long-term flight in weightlessness.  相似文献   

12.
Since 1977, EVA suits of the semi-rigid type have been used to support sorties from Russian orbiting stations. Currently, within the MIR station program, the Orlan-DMA, the latest modification of the Orlan semi-rigid EVA suit is used by crewmembers. Quite some experience has been gained by Russia in operations of the Orlan type suits. It has proved the advantages of the EVA suit of a semi-rigid configuration, featuring donning/doffing through a hinged backpack door with a built-in life support system. Meanwhile there were some wishes and comments from the crewmembers addressed to the enclosure design and some LSS components. Currently a number of ways and methods are being developed to improve operational characteristics of the suit as well as to enhance its reliability and lifetime. The forthcoming EVAs to be performed by the STS-MIR crewmembers and future EVAs from the common airlock of the International Space Station Alpha make implementation of the planned improvements even more consistent. The paper analyzes the experience gained in the Orlan-DMA operation and discusses planned improvements in light of the forthcoming activities. In particular the Orlan enhancement program is aimed to make the donning/doffing easier, enhance enclosure mobility, improve the condensate removal unit, increase the CCC (Contamination Control Cartridge) operation time and simplify the onboard subsystem design concept.  相似文献   

13.
In the recent years the Russian Orlan-M space suits have been improved as applied to their operational requirements for the ISS. A special attention is paid to enhancement of EVA crew efficiency and safety. The paper considers the main problems regarding specific features of the Russian space suit operation in the ISS, and analyses measures on their solution. In particular, the problems associated with the following are considered: enhancement of the anthropometric range for the EVA crewmembers; use of some US EMU elements and unified NASA equipment elements; Orlan-M operation support in the wide range of the ISS thermal conditions; use of Simplified Aid For Extravehicular activity Rescue (SAFER) designed as a self-rescue device, which will be used for an EVA crewmember return in the event that he (she) breaks away inadvertently from the ISS surface. The paper states the main space suit differences with reference to solution of the above problems. The paper presents briefly the design of space suit arms developed for crewmembers with small anthropometric parameters, as well as peculiarities and test results for the gloves with enhanced thermal protection. Measures on further space suit development with the purpose to improve its performances are considered.  相似文献   

14.
舱外活动系统述评   总被引:4,自引:2,他引:2  
舱外活动(EVA)系统可分为3部分:1)航天员装备系统,包括舱外航天服(EVA航天服)、安全系绳和机动装置;2)空间支持系统,包括气闸、约束装置、EVA工具、在轨训练设施、遥控自动操作装置,以及表面运输工具;3)地面试验、训练与保障系统,包括减重/失重设施、热/真空试验舱、虚拟现实模拟系统、星体表面模拟场地,以及任务保障设施。文章阐述EVA系统的组成与功能,评述EVA技术现状及发展趋势。  相似文献   

15.
The EVA space suit development in Europe   总被引:1,自引:0,他引:1  
The progress of the European EVA space suit predevelopment activities has resulted in an improved technical reference concept, which will form the basis for a start of the Phase C/D development work in 1992. Technology development work over the last 2 years has resulted in a considerable amount of test data and a better understanding of the characteristics and behaviour of individual parts of the space suit system, in particular in the areas of suits' mobility and life support functions. This information has enabled a consolidation of certain design features on the one hand, but also led to the challenging of some of the design solutions on the other hand. While working towards an improved situation with respect to the main design drivers mass and cost, the technical concept has been improved with respect to functional safety and ease of handling, taking the evolving Hermes spaceplane requirements into consideration. Necessary hardware and functional redundancies have been implemented taking the operational scenario with Hermes and Columbus servicing into consideration. This paper presents the latest design status of the European EVA space suit concept, with particular emphasis on crew safety, comfort and productivity, in the frame of the predevelopment work for the European Space Agency.  相似文献   

16.
In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program.  相似文献   

17.
Design to safety: experience and plans of the Russian space suit programme   总被引:1,自引:0,他引:1  
The paper presents the analysis of the Russian experience gained in the operations of Salyut-6, 7 and Mir orbital stations. The main factors determining their effectiveness and safety are considered and the main requirements to the EVA suit, as the most important tool for the EVA, are formulated.  相似文献   

18.
基于Lagrange方法的航天员舱外活动计算机仿真   总被引:2,自引:0,他引:2  
杨锋  袁修干 《宇航学报》2003,24(4):337-340,363
在比较各种地面微重力模拟设备的优缺点的基础上,阐述了计算机动态仿真航天员舱外活动(EVA,Extra Vehicular Activity)的必要性。简要的概述了应用计算多刚体系统动力学对EVA进行仿真的步骤。描述了拉格朗日方程在仿真过程中的应用,建立了用于仿真的动力学方程。选取典型的EVA,得出了描述该EVA系统运动的拉格朗日动力学方程。利用反向运动学和反向动力学对该EVA进行了仿真计算,并对结果进行了分析。  相似文献   

19.
Cousins D  Akin DL 《Acta Astronautica》1989,19(12):973-979
Measurements of the level and pattern of moments applied in the manual assembly of a space structure were made in extravehicular activity (EVA) and neutral buoyancy simulation (NBS). The Experimental Assembly of Structures in EVA program included the repeated assembly of a 3.6 m tetrahedral truss structure in EVA on STS-61B after extensive neutral buoyancy crew training. The flight and training structures were of equivalent mass and geometry to allow a direct correlation between EVA and NBS performance. A stereo photographic motion camera system was used to reconstruct in three dimensions rotational movements of structural beams during assembly. Moments applied in these manual handling tasks were calculated on the basis of the reconstructed movements taking into account effects of inertia, drag and virtual mass. Applied moments of 2.0 Nm were typical for beam rotations in EVA. Corresponding applied moments in NBS were typically up to five times greater. Moments were applied as impulses separated by several seconds of coasting in both EVA and NBS. Decelerating impulses were only infrequently observed in NBS.  相似文献   

20.
Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha' (ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号