首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
航空   1篇
航天   4篇
  2009年   1篇
  2004年   1篇
  1995年   1篇
  1994年   2篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
2.
During extravehicular activities (EVA) outside the spacecraft, astronauts have to work under reduced pressure in a space suit. This pressure reduction induces the risk of decompression sickness (DCS) by the formation of gas bubbles from excess nitrogen dissolved in the organism by breathing air at normal pressure. Under laboratory conditions the gas bubbles moving in the blood stream can be detected by the non-invasive ultrasonic Doppler method. By early detection of excessive bubble formation the development of DCS symptoms may be prevented by early application of preventative measures. The method could also be useful when applied in the space suit in order to compare the results of laboratory tests with operational results, because there is a discrepancy according to the DCS risk of laboratory experiments and actual EVA missions, where no symptoms have been reported yet. A prototype Doppler sensor has been developed and implemented in the Russian Orlan suit. To investigate the feasibility of this method under simulated space conditions, the equipment has been used in a series of 12 thermovacuum chamber tests with suited subjects, where intravenous bubble formation was compared to unsuited control experiments. In more than 50% of the suited tests good Doppler recordings could be achieved. In some cases with unsatisfying results the signal could be improved by breathholding. Although the results do not yet allow any conclusion about a possible difference between suited and unsuited subjects due to the small number of tests performed, the method proved its feasibility for use in EVA suits and should be further developed to enhance the safety of EVA procedures.  相似文献   
3.
在航空行业的精密测量领域,用于大尺寸的光学测量仪得到了较多应用.  相似文献   
4.
Analysis of the extravehicular activity (EVA) sortie experience gained in the former Soviet Union and physiologic hygienic aspect of space suit design and development shows that crewmember productivity is related to the following main factors: -space suit microclimate (gas composition, pressure and temperature); -limitation of motion activity and perception, imposed by the space suit; -good crewmember training in the ground training program; -level of crewmember general physical performance capabilities in connection with mission duration and intervals between sorties; -individual EVA experience (with accumulation) at which workmanship improves, while metabolism, physical and emotional stress decreases; -concrete EVA duration and work rate; -EVA bioengineering, including selection of tools, work station, EVA technology and mechanization.  相似文献   
5.
The aim of this paper is to review the main results of medical support of 78 two-person extravehicular activities (EVAs) which have been conducted in the Mir Space Program. Thirty-six male crewmembers participated in these EVAs. Maximum length of a space walk was equal to 7 h 14 min. The total duration of all space walks reached 717.1 man-hours. The maximum frequency of EVA's execution was 10 per year. Most of the EVAs (67) have been performed at mission elapsed time ranging from 31 to 180 days. The oxygen atmosphere of the Orlan space suit with a pressure of 40 kPa in combination with the normobaric cabin environment and a short (30 min) oxygen prebreathe protocol have minimized the risk of decompression sickness (DCS). There has been no incidence of DCS during performed EVAs. At the peak activity, metabolic rates and heart rates increased up to 9.9-13 kcal/min and 150-174 min-1, respectively. The medical problems have centred on feeling of moderate overcooling during a rest period in a shadow after the high physical loads, episodes with tachycardia accompanied by cardiac rhythm disorders at the moments of emotional stress, pains in the muscles and general fatigue after the end of a hard EVA. All of the EVAs have been completed safely.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号