首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
天基照相跟踪空间碎片批处理轨道确定研究   总被引:1,自引:0,他引:1  
随着国内外天基观测空间碎片研究的展开,文章提出了利用跟踪卫星的CCD(Charge
Coupled Device)相机对空间碎片进行轨道探测的方法,首先建立了CCD照相观测模型和基于 照相观测 的空间碎片批处理轨道确定模型。通过对CCD相机底片归算方法的分析可知,利用
CCD相机所获得的观测数据与跟踪卫星的姿态无关,且其精度只与测量和坐标转换计算的精 度有关,在测量和计算中可获得较高的精度。分别对分布密度较高的低轨道和地球同步 轨道区域的空间碎片进行了定轨分析。仿真结果表明,定轨时采用两个跟踪弧段的照相数据 定轨精度大大高于一个弧段照相数据的定轨精度;跟踪卫星距离空间碎片越近,定轨精度越 高;低轨道空间碎片的定轨精度高于地球同步轨道上的空间碎片定轨精度。
  相似文献   

2.
A Space Debris Impact Risk Analysis Tool (SDIRAT) was developed and implemented to assess the orbital debris impact risk on a specified target in Earth orbit, in terms of flux, relative velocity, impact velocity, direction of the incoming particles, debris mass and diameter. Based on a deterministic approach, SDIRAT uses a realistic orbital debris population where each representative particle is identified by its rectangular coordinates (position and velocity) at a reference epoch. Using this information, some geometrical algorithms were developed and implemented to evaluate the contribution of each particle to the incoming flux. The position of the particle with respect to a specified target drives the selection criteria to reject, or select, it as a possible projectile. On the other hand, the relative velocity vector can be used to estimate the impact direction of the incoming flux. SDIRAT was conceived as a general tool for a variety of scenarios, such as low circular and elliptical orbits, up to the geosynchronous ring. This paper presents some examples of possible applications, including the computation of the incoming debris flux on SAX (low Earth orbit), SIRIO (geosynchronous orbit) and the IRIS upper stage (elliptical orbit). Other applications assess the impact risk for the Soviet Radar Ocean Reconnaissance Satellites Cosmos 1900 and Cosmos 1932.  相似文献   

3.
It has become increasingly clear in recent years that the issue of space debris, particularly in low-Earth orbit, can no longer be ignored or simply mitigated. Orbital debris currently threatens safe space flight for both satellites and humans aboard the International Space Station. Additionally, orbital debris might impact Earth upon re-entry, endangering human lives and damaging the environment with toxic materials. In summary, orbital debris seriously jeopardizes the future not only of human presence in space, but also of human safety on Earth. While international efforts to mitigate the current situation and limit the creation of new debris are useful, recent studies predicting debris evolution have indicated that these will not be enough to ensure humanity?s access to and use of the near-Earth environment in the long-term. Rather, active debris removal (ADR) must be pursued if we are to continue benefiting from and conducting space activities. While the concept of ADR is not new, it has not yet been implemented. This is not just because of the technical feasibility of such a scheme, but also because of the host of economic, legal/regulatory, and political issues associated with debris remediation. The costs of ADR are not insignificant and, in today?s restrictive fiscal climate, are unlikely/to be covered by any single actor. Similarly, ADR concepts bring up many unresolved questions about liability, the protection of proprietary information, safety, and standards. In addition, because of the dual use nature of ADR technologies, any venture will necessarily require political considerations. Despite the many unanswered questions surrounding ADR, it is an endeavor worth pursuing if we are to continue relying on space activities for a variety of critical daily needs and services. Moreover, we cannot ignore the environmental implications that an unsustainable use of space will imply for life on Earth in the long run. This paper aims to explore some of these challenges and propose an economically, politically, and legally viable ADR option. Much like waste management on Earth, cleaning up space junk will likely lie somewhere between a public good and a private sector service. An international, cooperative, public-private partnership concept can address many of these issues and be economically sustainable, while also driving the creation of a proper set of regulations, standards and best practices.  相似文献   

4.
Anselmo  L.  Pardini  C. 《Space Debris》1999,1(2):87-98
Tethers are being proposed for a growing number of space applications. However, they may be particularly vulnerable to orbital debris and meteoroid impacts. In order to provide useful reference data for tether systems design, detailed analytical and numerical computations were carried out to assess the average impact rate of artificial debris and meteoroids. The specific geometric properties of tethers as debris targets, when compared to typical satellites, are discussed, and the results obtained are presented in tabular form, as a function of debris size and tether diameter.The computations were carried out for six circular orbits, spanning three altitudes (600, 800 and 1000km) and two inclinations (30° and 50°). Tether diameters in between 1mm and 2cm and debris larger than 0.1mm were considered in the analysis. The collision risk of tethers with spacecraft and upper stages in orbit was estimated as well.In the debris interval and orbital regimes considered, artificial debris represent the dominant contributor to the impact rate. At 600km and in the 0.1–10mm size range, the meteoroid and orbital debris impact rates are still comparable; however, at higher altitudes and in the 1–10cm size range, meteoroids contribute 20–30 times less to the collision probability.The results obtained confirm that for single-strand tethers in low Earth orbit the probability to be severed by orbital debris and meteoroid impacts is quite significant, making necessary the adoption of innovative designs for long duration missions.  相似文献   

5.
In November 1986, more than 20 years ago, an H8 upper stage of Ariane 1 exploded in orbit nine months after the end of its mission. So as to avoid the generation of debris in low Earth orbit, a dedicated complementary development modified the design, introducing systematic passivation of the stage. Ever since this event, space debris mitigation has been a major concern for all launcher activities in Europe.After a short recall of the launchers currently operated by Arianespace as well as those currently developed by ESA with CNES, particularly for the safeguard authority, including the most promising future evolutions, the set of applicable regulations is described. These rules are fundamentally derived from the IADC Guidelines (hence the UNCOPUOS ones), translated into European Code of Conduct and in some more applicable Standards, such as the one prepared by ESA. The process of preparing ISO standards, mainly through the ECSS Working Group, is also described.Three major families can be identified: minimization of Mission Related Objects, Passivation of stages at the end of mission, and orbital protected zones including the so-called 25-year rule.The paper describes how European launchers do or will fulfill these applicable standards, quantifying the efficiency of the mitigation rules, and describing improvement actions currently under study.  相似文献   

6.
文章介绍了一种适用于低地球轨道航天器的轨道碎片环境模型。对建立这个模型的数据源及设计标准进行了详细的叙述。并评价这个数据模型对未来空间环境的预测和测量中的不确定性。  相似文献   

7.
Smirnov  N.N.  Nazarenko  A.I.  Kiselev  A.B. 《Space Debris》2000,2(4):249-271
The paper discusses the mathematical modeling of long-term orbital debris evolution taking into account mutual collisions of space debris particles of different sizes. Investigations and long-term forecasts of orbital debris environment evolution in low Earth orbits are essential for future space mission hazard evaluation and for adopting rational space policies and mitigation measures. The paper introduces a new approach to space debris evolution mathematical modeling based on continuum mechanics incorporating partial differential equations. This is an alternative to the traditional approaches of celestial mechanics incorporating ordinary differential equations to model fragments evolution. The continuum approach to orbital debris evolution modeling has essential advantages for describing the evolution of a large number of particles, because it replaces the traditional tracking of space objects by modeling the evolution of their density of distribution.  相似文献   

8.
Long-duration spacecraft in low earth orbit such as the International Space Station (ISS) are highly susceptible to high-speed impacts by pieces of debris from past earth-orbiting missions. Among the hazards that accompany the penetration of a pressurized manned spacecraft are critical crack propagation in the module wall, crew hypoxia, and uncontrolled thrust due to air rushing out of the module wall hole. A Monte Carlo simulation tool was used to determine the effect of spacecraft wall construction on the survivability of ISS modules and crew following an orbital debris penetration. The simulation results indicate that enhanced shield wall designs (i.e., multi-wall systems with heavier inner bumpers) always lead to higher overall survivability of the station and crew due to an overwhelming decrease in likelihood of module penetration. The results of the simulations also indicate that changes in crew operations, equipment locations, and operation procedures can significantly reduce the likelihood of crew or station loss following an orbital debris penetration.  相似文献   

9.
张育林  张斌斌  王兆魁 《宇航学报》2018,39(12):1408-1418
针对空间碎片环境的长期演化问题,从宏观和微观两个方面,分别构建了碎片环境的整体演化模型和数值演化计算模型,并在此基础上研究了不同条件下碎片环境的长期演化分布特点,分析了碎片环境的稳定性和主要影响因素。低地球轨道碎片环境在未来200年内的演化结果表明,空间目标的相互碰撞解体,是空间碎片不断增加的主要因素;即使停止一切航天发射活动,空间碎片的数量仍在不断增加,表明低地球轨道空间碎片规模已经超越稳定临界点;进一步的发射活动会增强空间碎片环境演化的不稳定性,加剧“碰撞-目标解体-碰撞”反馈连锁碰撞效应。  相似文献   

10.
《Acta Astronautica》1999,44(7-12):313-321
The increase in the number of satellites in the Near Earth Orbit is exponential. The consequent increase in pollution of the orbital environment is of growing concern to the international community. There are currently only two observation systems available for measurement of orbital debris. Ground based radar and telescopes can detect objects larger than about 7 cm. Passive space based systems provide an accurate statistical estimation of flux for debris smaller than about 0.1 mm in size. Consequently, there is no way of obtaining information about debris in the millimeter-size range. Considering that the relative speed between objects in space is commonly in the km/s range, millimeter sized debris carry enough energy to be deadly to astronauts or to totally destroy the functioning of any satellite. Then National space agencies have recommended launching orbital spacecraft carrying debris detection experiments for gaining a better understanding of small debris.CNES (the French Space Agency) is developing a new family of micro-satellites, that will make possible to put into orbit a totally new system of radar that could measure in-situ flux of debris. We present results of this system analysis, which would cumulate the advantages of both ground-based radar and in orbit passive experiments.The proposed method for detection is quite original and allows the radar to act like a band-pass filter with respect to the debris diameter. The optimum frequency is shown to be in the Ka-band. Two points are critical in the definition of the radar: the average power available and the false alarm probability in the detection criterion. Therefore, we present a special receiver chain in order to optimize the signal-to-noise ratio. The estimate of the radial velocity through Doppler frequency measurement may be used to discriminate orbital debris from meteoroids. This system could be built today using an existing Continuous Wave amplifier. Several hundreds of objects per year could be detected yielding an accurate statistical estimation.The orbital debris radar would be a major contribution to our knowledge of millimeter sized debris. This experiment would contribute to making the current models more accurate at all inclinations. The micro-satellite concept would make the orbital debris radar mission cheap enough for considering a constellation of such satellites.  相似文献   

11.
Low earth orbit has become increasingly congested as the satellite population has grown over the past few decades, making orbital debris a major concern for the operational stability of space assets. This congestion was highlighted by the collision of the Iridium 33 and Cosmos 2251 satellites in 2009. This paper addresses the current state of orbital debris regulation in the United States and asks what might be done through policy change to mitigate risks in the orbital debris environment. A brief discussion of the nature of orbital debris addresses the major contributing factors including size classes, locations of population concentrations, projected satellite populations, and current challenges presented in using post-mission active debris removal to mitigate orbital debris. An overview of the current orbital debris regulatory structure of the United States reveals the fragmented nature of having six regulating bodies providing varying levels of oversight to their markets. A closer look into the regulatory policy of these agencies shows that, while they all take direction from The U.S. Government Orbital Debris Mitigation Standard Practices, this policy is a guideline with no real penalty for non-compliance. Various policy solutions to the orbital debris problem are presented, ranging from a business as usual approach to a consolidated regulation system which would encourage spacecraft operator compliance. The positive aspects of these options are presented as themes that would comprise an effective policy shift towards successful LEO conservation. Potential economic and physical limitations to this policy approach are also addressed.  相似文献   

12.
空间碎片防护结构设计优化技术研究进展   总被引:1,自引:0,他引:1  
空间碎片防护结构设计优化技术是航天器防护设计的关键技术之一,在空间碎片超高速撞击风险评估软件研制基础上,国际上已开始了空间碎片防护优化软件的研究开发,而且取得了阶段性的研究成果。丈章首先对防护结构构型方案及其防护材料选择评估技术作了简要介绍;然后重点对防护结构设计优化技术的研究进展从优化模型、优化算法、敏度分析等方面进行了分析综述;最后简要给出了防护结构设计优化流程和研究工作建议。  相似文献   

13.
Collisions among existing Low Earth Orbit (LEO) debris are now a main source of new debris, threatening future use of LEO space. Due to their greater number, small (1–10 cm) debris are the main threat, while large (>10 cm) objects are the main source of new debris. Flying up and interacting with each large object is inefficient due to the energy cost of orbit plane changes, and quite expensive per object removed. Strategically, it is imperative to remove both small and large debris. Laser-Orbital-Debris-Removal (LODR), is the only solution that can address both large and small debris. In this paper, we briefly review ground-based LODR, and discuss how a polar location can dramatically increase its effectiveness for the important class of sun-synchronous orbit (SSO) objects. With 20% clear weather, a laser-optical system at either pole could lower the 8-ton ENVISAT by 40 km in about 8 weeks, reducing the hazard it represents by a factor of four. We also discuss the advantages and disadvantages of a space-based LODR system. We estimate cost per object removed for these systems. International cooperation is essential for designing, building and operating any such system.  相似文献   

14.
2015 年2 月3 日,美国DMSP-F13 卫星发生爆炸解体,产生了百余块编目空间碎片。该卫星解体碎片主要分布在轨道高度600~1200 km 范围内,其中近50%的编目碎片在轨寿命将超过20 年,会对未来空间碎片环境构成长期影响。结合我国空间碎片环境工程模型SDEEM 对DMSP-F13 解体事件的分析结果显示,此次解体事件造成邻近轨道区域内空间碎片空间密度增加,对该区域航天器安全运行产生影响。  相似文献   

15.
Orbital debris environment models are essential in predicting the characteristics of the entire debris environment, especially for altitude and size regimes where measurement data is sparse. Most models are also used to assess mission collision risk. The IDES (Integrated Debris Evolution Suite) simulation model has recently been upgraded by including a new sodium–potassium liquid coolant droplet source model and a new historical launch database. These and other features of IDES are described in detail. The accuracy of the IDES model is evaluated over a wide range of debris sizes by comparing model predictions to three major types of debris measurement data in low Earth orbit. For the large-size debris population, the model is compared with the spatial density distribution of the United States (US) Space Command Catalog. A radar simulation model is employed to predict the detection rates of mid-size debris in the field of view of the US Haystack radar. Finally, the small-size impact flux relative to a surface of the retrieved Long Duration Exposure Facility (LDEF) spacecraft is predicted. At sub-millimetre sizes, the model currently under-predicts the debris environment encountered at low altitudes by approximately an order of magnitude. This is because other small-size debris sources, such as paint flakes have not yet been characterised. Due to the model enhancements, IDES exhibits good accuracy when predicting the debris environment at decimetre and centimetre sizes. Therefore, the validated initial conditions and the high fidelity future traffic model enables IDES to make long-term debris environment projections with more confidence.  相似文献   

16.
Chobotov  V.A.  Jenkin  A.B. 《Space Debris》2000,2(1):9-40
Many concepts of future space systems involve the use of parabolic mirrors for optical applications. The need for a highly reflective finish means that performance of such systems will be particularly vulnerable to space debris and micrometeoroids. A case study was performed to examine the micrometeoroid and debris hazard posed to an orbiting parabolic mirror. The mirror considered was nominally Earth-pointed in a circular orbit with two candidate altitudes in low Earth orbit (LEO), well within the region inhabited by man-made debris. The timeframes of interest for the two missions were 2002–2004 and 2005–2015. Microgram and larger particles were considered.To perform this study, it was necessary to determine the debris and meteoroid flux across the parabolic surface. To assess sensitivity of results to uncertainity in available data, two approaches were taken. The first approach was an analytical procedure based on use of long duration exposure facility (LDEF) data and published theoretical results. The second approach used two readily available computer models: the ESA MASTER model and NASA's ORDEM96. In addition, an in-house implementation of the Grün meteoroid model was used. While multiple results were available for the total flux and flux distributed over azimuth, only the MASTER model was available for generating the desired elevation data to obtain the flux distribution over the parabolic mirror. In an attempt to bound the uncertainty in the knowledge of the elevation distribution, the results from both the MASTER and ORDEM96 models were processed together to form a separate, hybrid prediction. In addition, results were used in the preliminary design of a protective skirt.This case study elucidated the practical obstacles and considerations in performing a sufficiently accurate debris and meteoroid analysis using data and tools that are readily available to the broad space sector. The resulting procedures are useful in the assessment of the risk posed to optics by the meteoroid and debris environment and in the design of protection.  相似文献   

17.
A methodology has been developed for the physical (laboratory) simulation of the prolonged exposure of a space debris object to high-energy ions of a plasma plume for removing the object into low-Earth orbit with its subsequent burning in the Earth’s atmosphere. The methodology is based on the equivalence criteria of two modes of exposure (in the Earth’s ionosphere and in the setup) and the procedure for accelerated resource tests in terms of the sputtering of the space debris material and its deceleration by a plasma jet in the Earth’s ionosphere.  相似文献   

18.
空间碎片现状与清理   总被引:7,自引:3,他引:4  
分析了空间碎片的严峻现状和空间碎片的10个来源,指出轨道碰撞是产生碎片最多的因素;介绍了空间碎片的观测方法、原理和观测系统的概况,包括正在兴建的观测系统——“空间篱笆”。最后,根据不同轨道高度和空间碎片的数量与大小,提出空间碎片清理原则、要求和9种清理方法。  相似文献   

19.
Active exploration of the space leads to growth of a near-Earth space pollution. The frequency of the registered collisions of space debris with functional satellites highly increased during last 10 years. As a rule a large space debris can be observed from the Earth and catalogued, then it is possible to avoid collision with the active spacecraft. However every large debris is a potential source of a numerous small debris particles. To reduce debris population in the near Earth space the large debris should be removed from working orbits. The active debris removal technique is considered that intend to use a tethered orbital transfer vehicle, or a space tug attached by a tether to the space debris. This paper focuses on the dynamics of the space debris with flexible appendages. Mathematical model of the system is derived using the Lagrange formalism. Several numerical examples are presented to illustrate the mutual influence of the oscillations of flexible appendages and the oscillations of a tether. It is shown that flexible appendages can have a significant influence on the attitude motion of the space debris and the safety of the transportation process.  相似文献   

20.
文章基于空间碎片被动防护需求,提出了一种梯度波纹夹层防护结构,并对其超高速碰撞过程及形成碎片云的特性进行了仿真分析。仿真结果表明,相比于Whipple结构,在梯度波纹夹层结构中冲击波的卸载方式更复杂,更有利于空间碎片的破碎;碰撞速度在5~20 km/s时,碎片云的膨胀半角先增大后减小;夹层结构中前置波纹板对撞击动能中不可逆功的吸收量和吸收占比最大。研究结果对空间碎片被动防护结构的设计具有一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号