首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
航天技术   9篇
航天   8篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2008年   4篇
  2000年   1篇
  1999年   4篇
排序方式: 共有17条查询结果,搜索用时 843 毫秒
1.
Anselmo  L.  Pardini  C. 《Space Debris》2000,2(2):67-82
The short- and long-term effects of spacecraft explosions, as a function of the end-of-life re-orbit altitude above the geostationary orbit (GEO), were analyzed in terms of their additional contribution to the debris flux in the GEO ring. The simulated debris clouds were propagated for 72yrs, taking into account all the relevant orbital perturbations.The results obtained show that 6–7 additional explosions in GEO would be sufficient, in the long term, to double the current collision risk with sizable objects in GEO. Unfortunately, even if spacecraft were to re-orbit between 300 and 500km above GEO, this would not significantly improve the situation. In fact, an altitude increase of at least 2000km would have to be adopted to reduce by one order of magnitude the long-term risk of collision among geostationary satellites and explosion fragments. The optimal debris mitigation strategy should be a compromise between the reliability and effectiveness of spacecraft end-of-life passivation, the re-orbit altitude and the acceptable debris background in the GEO ring. However, for as long as the re-orbit altitudes currently used are less than 500km above GEO, new spacecraft explosions must be avoided in order to preserve the geostationary environment over the long term.  相似文献   
2.
A large set of simulations, including all the relevant perturbations, was carried out to investigate the long-term dynamical evolution of fictitious high area-to-mass ratio (A/M) objects released, with a negligible velocity variation, in each of the six orbital planes used by Global Positioning System (GPS) satellites. As with similar objects discovered in near synchronous trajectories, long lifetime orbits, with mean motions of about 2 revolutions per day, were found possible for debris characterized by extremely high area-to-mass ratios. Often the lifetime exceeds 100 years up to A/M ∼ 45 m2/kg, decreasing rapidly to a few months above such a threshold. However, the details of the evolution, which are conditioned by the complex interplay of solar radiation pressure and geopotential plus luni-solar resonances, depend on the initial conditions. Different behaviors are thus possible. In any case, objects like those discovered in synchronous orbits, with A/M as high as 20–40 m2/kg, could also survive in this orbital regime, with semi-major axes close to the semi-synchronous values, with maximum eccentricities between 0.3 and 0.7, and with significant orbit pole precessions (faster and wider for increasing values of A/M), leading to inclinations between 30° and more than 90°.  相似文献   
3.
4.
5.
The trajectory modeling of satellites that are re-entering the Earth’s atmosphere, as a result of natural orbital decay, has always been a challenging task. Residual lifetime estimations and re-entry predictions are affected by substantial uncertainties, associated with atmospheric density models, with the forecasts of the relevant solar and geomagnetic activity indices and with tracking data, which for uncontrolled re-entries are usually sparse and not particularly accurate. Furthermore, modeling the aerodynamic forces that act on low altitude satellites is a formidable task, especially for objects of a complex shape and unknown attitude evolution.  相似文献   
6.
The solutions adopted for the disposal of the upper stages used to put in orbit the first satellites of the new European (Galileo) and Chinese (Beidou) navigation constellations were analyzed. The orbit evolution of the rocket bodies was modeled for 200 years, taking into account all relevant perturbations, and the chosen disposal options were evaluated in terms of their long-term consequences for the debris environment. The results obtained, when applicable, were also discussed in the context of the eccentricity instability problem, pointed out in previous studies. In addition, the long-term evolution of the fragments resulting from a Beidou rocket body breakup, and of simulated high area-to-mass ratio objects released in the disposal orbits of the first two Galileo upper stages, was investigated.Eight out of ten Beidou upper stages were found to have an orbital lifetime <25 years and the other two resulted in a dwell time of approximately 6 years below 2000 km. It was also found that the perigee heights of the two upper stages used to deploy the first Galileo test spacecraft will remain more than 169 km above the constellation nominal altitude, never crossing the existing or planned navigation systems. In spite of an inclination resonance possibly leading to the exponential growth of the eccentricity over several decades, the optimal choice of the disposal orbital elements was able to prevent such an outcome, by maintaining the orbit nearly circular. Therefore, the upper stage disposal strategies used so far for Beidou and Galileo have generally been quite successful in averting the long-term interference of such rocket bodies with the navigation constellations, provided that accidental breakups are prevented.  相似文献   
7.
This article summarizes the activities in preparation of a microgravity experiment to be carried out by using a small technological payload onboard a microsatellite developed by the Italian Space Agency. A dedicated hardware will be developed to investigate innovative heat pipes filled with self-rewetting fluids, i.e. dilute aqueous alcoholic solutions with unique surface tension properties. After a general introduction of the scientific background, the paper is focused on the main activities in preparation of the flight experiment, on the design of the flight hardware and on the experimental planned procedure. The laboratory results achieved on ground in preparation of a flight experiment are also presented, including measurements of fluids physical properties and preliminary heat pipes performances characterization test. From the engineering point of view, the activities dealing with heat pipes filling and sealing are included. The activities for heat pipe characterization conclude the paper.  相似文献   
8.
A Space Debris Impact Risk Analysis Tool (SDIRAT) was developed and implemented to assess the orbital debris impact risk on a specified target in Earth orbit, in terms of flux, relative velocity, impact velocity, direction of the incoming particles, debris mass and diameter. Based on a deterministic approach, SDIRAT uses a realistic orbital debris population where each representative particle is identified by its rectangular coordinates (position and velocity) at a reference epoch. Using this information, some geometrical algorithms were developed and implemented to evaluate the contribution of each particle to the incoming flux. The position of the particle with respect to a specified target drives the selection criteria to reject, or select, it as a possible projectile. On the other hand, the relative velocity vector can be used to estimate the impact direction of the incoming flux. SDIRAT was conceived as a general tool for a variety of scenarios, such as low circular and elliptical orbits, up to the geosynchronous ring. This paper presents some examples of possible applications, including the computation of the incoming debris flux on SAX (low Earth orbit), SIRIO (geosynchronous orbit) and the IRIS upper stage (elliptical orbit). Other applications assess the impact risk for the Soviet Radar Ocean Reconnaissance Satellites Cosmos 1900 and Cosmos 1932.  相似文献   
9.
This paper provides a Hamiltonian formulation of the averaged equations of motion with respect to short periods (1 day) of a space debris subjected to direct solar radiation pressure and orbiting near the geostationary ring. This theory is based on a semi-analytical theory of order 1 regarding the averaging process, formulated using canonical and non-singular elements for eccentricity and inclination. The analysis is based on an expansion in powers of the eccentricity and of the inclination, truncated at an arbitrary high order.  相似文献   
10.
Conditions appropriate to gas-surface interactions on satellite surfaces in orbit have not been successfully duplicated in the laboratory. However, measurements by pressure gauges and mass spectrometers in orbit have revealed enough of the basic physical chemistry that realistic theoretical models of the gas-surface interaction can now be used to calculate physical drag coefficients. The dependence of these drag coefficients on conditions in space can be inferred by comparing the physical drag coefficient of a satellite with a drag coefficient fitted to its observed orbital decay. This study takes advantage of recent data on spheres and attitude stabilized satellites to compare physical drag coefficients with the histories of the orbital decay of several satellites during the recent sunspot maximum. The orbital decay was obtained by fitting, in a least squares sense, the semi-major axis decay inferred from the historical two-line elements acquired by the US Space Surveillance Network. All the principal orbital perturbations were included, namely geopotential harmonics up to the 16th degree and order, third body attraction of the Moon and the Sun, direct solar radiation pressure (with eclipses), and aerodynamic drag, using the Jacchia-Bowman 2006 (JB2006) model to describe the atmospheric density. After adjusting for density model bias, a comparison of the fitted drag coefficient with the physical drag coefficient has yielded values for the energy accommodation coefficient as well as for the physical drag coefficient as a function of altitude during solar maximum conditions. The results are consistent with the altitude and solar cycle variation of atomic oxygen, which is known to be adsorbed on satellite surfaces, affecting both the energy accommodation and angular distribution of the reemitted molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号